\(\frac{2x+1}{\sqrt{x^3}-1}\)\(-\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

\(\left(\frac{2x+1}{\sqrt{x}^3-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\frac{1+\sqrt{x}^3}{1+\sqrt{x}}-\sqrt{x}\)

\(=\left(\frac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\)

\(=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(1-\sqrt{x}+x\right)-\sqrt{x}\)

\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(1-\sqrt{x}+x\right)-\sqrt{x}\)

\(=\frac{1}{\sqrt{x}-1}.\left(1-\sqrt{x}+x\right)-\sqrt{x}\)

\(=\frac{1-\sqrt{x}+x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{1-\sqrt{x}+x-x+\sqrt{x}}{\sqrt{x}-1}=\frac{1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{x-1}\)

7 tháng 11 2018

CAm on ban

7 tháng 10 2019

B=\(\frac{x\sqrt{x}-1}{x-1}\)(x>0,x≠1)

=\(\frac{\sqrt{x^3}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

31 tháng 1 2020

\( a)A = \dfrac{{a - \sqrt a - 6}}{{4 - a}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{a + 2\sqrt a - 3\sqrt a - 6}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 3} \right)}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 3}}{{\sqrt a - 2}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 2}}{{\sqrt a - 2}} = - 1 \)

31 tháng 1 2020

\( b)B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{x - 1}}\\ B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{\sqrt x + 1 + \sqrt x - 1 - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \dfrac{2}{{\sqrt x + 1}} \)

13 tháng 9 2019

\(C=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

Ta co:

\(\sqrt{x}-1+\frac{2}{\sqrt{x}}=\frac{x-\sqrt{x}+2}{\sqrt{x}}=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}{\sqrt{x}}>0\)

\(\Rightarrow\sqrt{x}-1>-\frac{2}{\sqrt{x}}\)

25 tháng 7 2016

1) 

a) Ta có : \(\frac{x^2+5}{\sqrt{x^2+4}}=\frac{\left(x^2+4\right)+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}\). Đến đây áp dụng bđt \(a+\frac{1}{a}>2\)là ra nhé :)

b) Ta sẽ chứng minh bằng biến đổi tương đương : 

\(\sqrt{\left(a+c\right)\left(b+d\right)}\ge\sqrt{ab}+\sqrt{cd}\)

\(\Leftrightarrow\left(a+c\right)\left(b+d\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow ab+ad+bc+cd\ge ab+cd+2\sqrt{abcd}\)

\(\Leftrightarrow ad-2\sqrt{abcd}+bc\ge0\)

\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)(luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.

25 tháng 7 2016

2) Mình làm tóm tắt thôi nhé , do đề dài...

a) \(\sqrt{2x+\sqrt{4x-1}}-\sqrt{2x-\sqrt{4x-1}}\)

\(=\frac{\sqrt{\left(4x-1\right)+2\sqrt{4x-1}+1}+\sqrt{\left(4x-1\right)-2\sqrt{4x-1}+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{4x-1}+1\right)^2}+\sqrt{\left(\sqrt{4x-1}+1\right)^2}}{\sqrt{2}}=\frac{\left|\sqrt{4x-1}-1\right|+\left|\sqrt{4x-1}+1\right|}{\sqrt{2}}\)

b) \(\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+3\right)}{\sqrt{x}-\sqrt{y}+3}=\sqrt{x}+\sqrt{y}\)

c) Biến đổi  : \(\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}-1\right|\)

d) Biến đổi tương tự c) 

e) \(\sqrt{x+\sqrt{x^2-4}}.\sqrt{x-\sqrt{x^2-4}}=\sqrt{x^2-\left(x^2-4\right)}=\sqrt{4}=2\)

16 tháng 12 2016

a) \(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(x\ge0;x\ne1\right)\)

\(=-\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{3}{\sqrt{x}+1}\)

b) Để \(Q=-1\)

\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow\sqrt{x}+1=3\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

13 tháng 5 2019

Ta có \(\frac{A}{B}=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\right)=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\left[\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right]=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)=\sqrt{x}+4\)

Để \(\frac{A}{B}\ge\frac{x}{4}+5\) thì \(\sqrt{x}+4\ge\frac{x}{4}+5\Leftrightarrow\sqrt{x}\ge\frac{x}{4}+1\Leftrightarrow x-4\sqrt{x}+4\le0\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\)

\(\left(\sqrt{x}-2\right)^2\ge0\)

Suy ra \(\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(tm)

Vậy x=4 thì \(\frac{A}{B}\ge\frac{x}{4}+5\)

13 tháng 5 2019

\(B=\frac{1}{\sqrt{x}-1}\) (tự rút gọn nha)

\(\frac{A}{B}\ge\frac{x}{4}+5\\ \sqrt{x}+4\ge\frac{x}{4}+5\\ \frac{x}{4}-\sqrt{x}+1\le0\\ x-4\sqrt{x}+4\le0\\ \left(\sqrt{x}-2\right)^2\le0\\ \Rightarrow\sqrt{x}-2=0\\ \Rightarrow x=4\)

Vậy để \(\frac{A}{B}\ge\frac{x}{4}+5\) thì x=4