![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{x\left|x-2\right|}{x^2+8x-20}=\frac{x\left|x-2\right|}{x^2-2x+10x-20}=\frac{x\left|x-2\right|}{x\left(x-2\right)+10\left(x-2\right)}=\frac{x\left|x-2\right|}{\left(x+10\right)\left(x-2\right)}\)
Xét \(x-2\ge0\Leftrightarrow x\ge2\) ta có :
\(A=\frac{x\left(x-2\right)}{\left(x+10\right)\left(x-2\right)}=\frac{x}{x+10}\)
Xét \(x-2< 0\Leftrightarrow x< 2\) ta có :
\(A=\frac{x\left(2-x\right)}{\left(x+10\right)\left(x-2\right)}=\frac{-x}{x+10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để : \(\left(2x+\frac{1}{8}\right)\left(3x-\frac{4}{5}\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{1}{8}>0;3x-\frac{4}{5}>0\\2x+\frac{1}{8}< 0;3x-\frac{4}{5}< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x>-\frac{1}{8};3x>\frac{4}{5}\\2x< \frac{-1}{8};3x< \frac{4}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>-\frac{1}{4};x>\frac{12}{5}\Rightarrow x>\frac{12}{5}\\x< -\frac{1}{4};x< \frac{12}{5}\Rightarrow x< -\frac{1}{4}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: =>(3x+6)(x+5)<0
=>(x+2)(x+5)<0
=>-5<x<-2
b: \(\Leftrightarrow\dfrac{x+2}{x+1}>0\)
=>x>-1 hoặc x<-2
c: \(\Leftrightarrow\dfrac{x-1}{2x+5}-1>0\)
\(\Leftrightarrow\dfrac{x-1-2x-5}{2x+5}>0\)
\(\Leftrightarrow\dfrac{x+6}{2x+5}< 0\)
=>x>-5/2 hoặc x<-6
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 : Ta có :
\(\hept{\begin{cases}\left|x+y-5\right|\ge0\forall x;y\\\left|2x-y+8\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x+y-5\right|+\left|2x-y+8\right|\ge0\forall x;y}\)
Dấu \("="\)xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left|x+y-5\right|=0\\\left|2x-y+8\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-5=0\\2x-y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=5\\2x-y=-8\end{cases}}}\)
\(\Leftrightarrow x+y+2x-y=5+-8\)
\(\Leftrightarrow3x=-3\)
\(\Leftrightarrow x=-1\)
Mà \(x+y=5\Rightarrow y=5-\left(-1\right)=6\)
Vậy \(x=-1;y=6\)
Câu 2 : Ta có :
\(\left|x\right|\ge0\forall x;\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\forall x\)
Dấu \("="\)xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|x+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\end{cases}\Leftrightarrow}}\)Loại
Vậy không có TH x thỏa mãn
Câu 3 : Ta có :
\(\left|-y\right|\ge0\forall y\)
\(\Rightarrow\frac{-2}{5}-\left|-y\right|\le-\frac{2}{5}\)
Mà : \(\left|\frac{1}{2}-\frac{1}{3}+x\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{1}{2}-\frac{1}{3}+x\right|=-\frac{2}{5}-\left|-y\right|\)( vô lý )
Vậy không có TH x thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x-1\right)\left(x-2\right)>0\)
=> \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>1\\x>2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
=> \(1< x< 2\)
b) 2x - 3 < 0
=> 2x < 3
=> x < 3/2
c) \(\left(2x-4\right)\left(9-3x\right)>0\)
=> 2(x - 2). 3(3 - x) > 0
=> (x - 2)(3 - x) > 0
=> \(\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}}\)
=> 2 < x < 3
Tìm x thuộc Q
a. \(\frac{13}{x-1}+\frac{5}{2x-2}-\frac{6}{3x-3}=3\)
b. \(\frac{2x}{3}-\frac{3}{4}>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{6}{3\left(x-1\right)}=3\)
\(\left(13+\frac{5}{2}-2\right)\left(\frac{1}{x-1}\right)=3\)
27/2*1/(x-1)=3
1/(x-1)=3:27/2
1/(x-1)=2/9
x-1=9/2
x=11/2
b)2x/3-3/4>0
2x/3>3/4
8x/12>9/12
=>8x>9 => x<=1