Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
Mình chỉ bt làm câu d)
Cách 1:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x\times\frac{x}{4}=y\times\frac{y}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{xy}{5}\Rightarrow\frac{x^2}{4}=\frac{180}{5}=36\)
\(\Rightarrow x^2=36\times4=144=\orbr{\begin{cases}\left(+12\right)^2\\\left(-12\right)^2\end{cases}\Rightarrow x=\orbr{\begin{cases}12\\-12\end{cases}}}\)
Với x = 12 thì y = 180 : 12 = 15
Với x = -12 thì y = 180 : (-12) = -15
* Cách 2:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4}{5}y\)
Ta có:
\(xy=180\Rightarrow\frac{4}{5}y\times x=180\times\frac{4}{5}=144\)
Mà \(\frac{4}{5}y=x\Rightarrow x^2=144\Rightarrow...\) làm tương tự câu a
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
https://olm.vn/hoi-dap/question/148595.html
vào đấy tham khảo nhé
^_^
c) \(4x=3y;7y=5z\)và\(2x+3y-z=186\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{15}=\frac{x}{20}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất Bắc Cầu
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2z+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy x=45;y=60;z=84
1 Ta có x -24 = y
Suy ra x - y = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/7 = y/3 = x-y/7-3 =24/4=6
suy ra x= 42
y = 18
\(\frac{x}{2}\)= \(\frac{y}{3}\); \(\frac{y}{4}\)= \(\frac{z}{5}\)và x + y - z = 10
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\); \(\frac{y}{12}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)= \(\frac{x+y-z}{8+12-15}\)= \(\frac{10}{5}\)= 2
\(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Vậy x= 16
y= 24
z= 30
d) 2x = 3y ; 5x = 7z và 3x - 7y + 5x = 3
\(\Rightarrow\)\(\frac{x}{3}\)= \(\frac{y}{2}\); \(\frac{x}{7}\)= \(\frac{z}{5}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\); \(\frac{x}{21}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)\(\Rightarrow\)\(\frac{3x}{63}\)= \(\frac{7y}{98}\)= \(\frac{5z}{75}\)= \(\frac{3x-7y+5z}{63-98+75}\)= \(\frac{30}{40}\)=\(\frac{3}{4}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{3}{4}\\\frac{y}{14}=\frac{3}{4}\\\frac{z}{15}=\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{cases}}\)
Vậy x= \(\frac{63}{4}\)
y= \(\frac{21}{2}\)
z= \(\frac{45}{4}\)
Trả lời:
1, Ta có: \(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{4}\)
\(\Rightarrow x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow2x+2y+2z=\frac{13}{12}\)
\(\Rightarrow2\left(x+y+z\right)=\frac{13}{12}\)
\(\Rightarrow x+y+z=\frac{13}{24}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\\y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\\z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\end{cases}}\)
2, Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tc dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}x=93\\y=155\\z=-62\end{cases}}\)
3, Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tc dãy tỉ số bằng nhau, ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5x}{3.21-7.14+5.10}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
a) \(2x=3y=7z\)
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}=\frac{3x-7y+5z}{63-98+30}=\frac{30}{-5}=-6\)
\(\Rightarrow\hept{\begin{cases}x=21.\left(-6\right)=-126\\y=14.\left(-6\right)=-84\\z=6.\left(-6\right)=-36\end{cases}}\)
b) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.8=16\\y=2.12=24\\z=2.15=30\end{cases}}\)
Ta có: \(\frac{2}{x}=\frac{3}{y};\frac{5}{y}=\frac{7}{z}\Rightarrow2y=3x;5z=7y.\)
\(\Rightarrow\frac{y}{3}=\frac{x}{2};\frac{z}{7}=\frac{y}{5}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{3x+5z-7y}{30+105-105}=\frac{30}{30}=1\)
Vậy x = 1 x 10 = 10
y = 1 x 15 = 15
z = 1 x 21 = 21