Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left[2x-2\right]\cdot2x}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left[\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left[2x-2\right]\cdot2x}\right]=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right]=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{8}\)
\(\Rightarrow\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{8}:\frac{1}{2}\)
\(\Rightarrow\left[\frac{1}{2}-\frac{1}{2x}\right]=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow2x=4\Leftrightarrow x=2\)
Vậy x = 2
Mun ảnh đại diện cute
<3
À tk mk nhé. giờ mk tk bn trước
Giải:
a) \(\left(4,5-2x\right).\left(-1\dfrac{4}{7}\right)=\dfrac{11}{14}\)
\(\Leftrightarrow\left(4,5-2x\right).\left(-\dfrac{3}{7}\right)=\dfrac{11}{14}\)
\(\Leftrightarrow4,5-2x=\dfrac{11}{14}:\left(-\dfrac{3}{7}\right)=-\dfrac{11}{6}\)
\(\Leftrightarrow2x=4,5-\left(-\dfrac{11}{6}\right)\)
\(\Leftrightarrow2x=\dfrac{19}{3}\)
\(\Leftrightarrow x=\dfrac{19}{3}:2=\dfrac{19}{6}\)
Vậy ...
b) \(\dfrac{4}{9}x=\dfrac{9}{8}-0,125\)
\(\Leftrightarrow\dfrac{4}{9}x=\dfrac{9}{8}-\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{9}x=1\)
\(\Leftrightarrow x=1:\dfrac{4}{9}=\dfrac{9}{4}\)
Vậy ...
Các câu còn lại làm tương tự.
a)\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\\ =\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\\ =\frac{1}{3}.\left(1-\frac{1}{103}\right)\\ =\frac{1}{3}.\frac{102}{103}\\ =\frac{34}{103}\)
\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)\cdot2x}=\frac{1}{8}\left(x\inℕ;x\ge2\right)\)
Đặt \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)2x}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left(2x-2\right)2x}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2x-2}-\frac{1}{2x}\)
\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{x-1}{2x}\)
\(\Rightarrow A=\frac{x-1}{2x}:2=\frac{x-1}{2x}\cdot\frac{1}{2}=\frac{x-1}{4x}\)
Mà \(A=\frac{1}{8}\Rightarrow\frac{x-1}{4}=\frac{1}{8}\)
\(\Leftrightarrow8x-8=4\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{12}{8}=\frac{3}{2}\left(ktm\right)\)
Vậy không có x thỏa mãn yêu cầu đề bài
a) Ta có:
\(\frac{3}{x+2}=\frac{5}{2x+1}\)
\(\Rightarrow3\left(2x+1\right)=5\left(x+2\right)\)
\(\Rightarrow6x+3=5x+10\)
\(\Rightarrow6x-5x=10-3\)
\(\Rightarrow x=7\)
b)Ta có:
\(\frac{5}{8x-2}=\frac{-4}{7-x}\)
\(\Rightarrow5\left(7-x\right)=-4\left(8x-2\right)\)
\(\Rightarrow35-5x=-32x+8\)
\(\Rightarrow-5x+32x=8-35\)
\(\Rightarrow27x=-27\)
\(\Rightarrow x=-1\)
c) Ta có:
\(\frac{4}{3}=\frac{2x-1}{x}\)
\(\Rightarrow4x=3\left(2x-1\right)\)
\(\Rightarrow4x=6x-3\)
\(\Rightarrow3=6x-4x=2x\)
\(\Rightarrow x=\frac{3}{2}\)
d)Ta có:
\(\frac{2x-1}{3}=\frac{3x+1}{4}\)
\(\Rightarrow4\left(2x-1\right)=3\left(3x+1\right)\)
\(\Rightarrow8x-4=9x+3\)
\(\Rightarrow8x-9x=3+4\)
\(\Rightarrow-x=7\Rightarrow x=-7\)
e)Ta có:
\(\frac{4}{x+2}=\frac{7}{3x+1}\)
\(\Rightarrow4\left(3x+1\right)=7\left(x+2\right)\)
\(\Rightarrow12x+4=7x+14\)
\(\Rightarrow12x-7x=14-4\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\)
f)Ta có:
\(\frac{-3}{x+1}=\frac{4}{2-2x}\)
\(\Rightarrow-3\left(2-2x\right)=4\left(x+1\right)\)
\(\Rightarrow-6+6x=4x+4\)
\(\Rightarrow6x-4x=4+6\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=5\)
\(a,\frac{1-2x}{8}=\frac{-4}{2\left(2x-1\right)}\)
\(\Rightarrow2\left(1-2x\right)\left(2x-1\right)=-32\)
\(\Rightarrow2\left(2x-1\right)\left(2x-1\right)=32\)
\(\Rightarrow\left(2x-1\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=5\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)
\(b,\frac{-2}{x-1}=\frac{1-x}{\frac{8}{25}}\)
\(\Leftrightarrow(x-1)(1-x)=-\frac{16}{25}\)
\(\Leftrightarrow-(x-1)^2=-\frac{16}{25}\)
\(\Leftrightarrow-(x+1)^2=\left[-\frac{4}{5}\right]^2=\left[\frac{4}{5}\right]^2\)
\(\Leftrightarrow\orbr{\begin{cases}-x+1=-\frac{4}{5}\\-x+1=\frac{4}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{5}\\x=\frac{1}{5}\end{cases}}\)
Thôi trả lời mấy câu này giúp mấy e vậy, kiếm mãi ko nổi 1 cái cho đẹp tcn ... (P/s : trình độ kém quá .-.)
\(\frac{2x-1}{8}=\frac{2}{2x-1}\)
\(\Leftrightarrow\left(2x-1\right)^2=16\)
\(\Leftrightarrow\left(2x-1\right)^2=4^2\)
\(\Leftrightarrow\left(2x-1\right)^2=\left(\pm4\right)^2\)
TH1 : \(2x-1=4\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\)
TH2 : \(2x-1=-4\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
Bài làm
@Thủy: Lớp 6 chưa học hằng đẳng thức.
\(\frac{2x-1}{8}=\frac{2}{2x-1}\) ĐKXĐ: x khác 1/2
=> \(\frac{\left(2x-1\right)\left(2x-1\right)}{8\left(2x-1\right)}=\frac{2.8}{8\left(2x-1\right)}\)
=> ( 2x - 1 )( 2x - 1 ) = 16
=> [( 2x - 1 ) . 2x ] - [( 2x - 1 ) . 1 ] = 16
=> 4x2 - 2x - 2x + 1 = 16
=> 4x2 - 4x + 1 - 16 = 0
=> 4x2 - 4x - 15 = 0
=> 4x2 - 10x + 6x - 15 = 0
=> 4x( 2x - 5 ) + 3( 2x - 5 ) = 0
=> ( 4x + 3 )( 2x - 5 ) = 0
=> \(\orbr{\begin{cases}4x+3=0\\2x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{4}\\x=\frac{5}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{4}\\x=\frac{5}{2}\end{cases}}}\)
Vậy x = -3/4 hoặc x = 5/2.