\(\frac{2x-1}{2}-1=\frac{x^2+x-3}{x-1}-\frac{5x-2}{2-2x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

\(\frac{2x-1}{2}\)-1=\(\frac{x^2+x-3}{x-1}\)-\(\frac{5x-2}{2-2x}\)

\(\frac{2x-1}{2}\)-1=\(\frac{x^2+x-3}{x-1}\)-\(\frac{5x-2}{2\left(1-x\right)}\)

\(\frac{\left(2x-1\right)\left(x-1\right)}{2\left(x-1\right)}\)-\(\frac{2\left(x-1\right)}{2\left(x-1\right)}\)=\(\frac{2\left(x^2+x-3\right)}{2\left(x-1\right)}\)+\(\frac{5x-2}{2\left(x-1\right)}\)

2x2-x-2x+1-2x+2=2x2+2x-6+5x-2

2x2-x-2x+1-2x+2-2x2-2x+6-5x+2=0

2x2-2x2-x-2x-2x-2x-5x+1+2+6+2=0

11-12x=0

12x=11

x=\(\frac{11}{12}\)

10 tháng 4 2020

Bài làm

j) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\) ĐKXĐ: \(x\ne\pm5\)

\(\Leftrightarrow\frac{\left(x+5\right)^2}{x^2-25}-\frac{\left(x-5\right)^2}{x^2-25}=\frac{20}{x^2-25}\)

\(\Rightarrow x^2+10x+25-x^2+10x-25=20\)

\(\Leftrightarrow20x=20\)

\(\Leftrightarrow x=1\)

Vậy x = 1 là nghiệm phương trình.

k) \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)

\(\Leftrightarrow\frac{3\left(x+4\right)}{x^2-16}+\frac{5x-2}{x^2-16}=\frac{4\left(x-4\right)}{x^2-16}\)

\(\Rightarrow3x+12+5x-2=4x-16\)

\(\Leftrightarrow4x=-26\)

<=> \(x=-\frac{13}{2}\)

Vậy x = -13/2 là nghiệm phương trình.

l) \(\frac{2x-1}{3}-\frac{5x+2}{4}=2x\)

\(\Leftrightarrow4x-4-15x-6=24x\)

\(\Leftrightarrow-35x=10\)

\(\Leftrightarrow x=-\frac{2}{7}\)

Vậy x = -2/7 là nghiệm phương trình.

10 tháng 4 2020

Bài làm

2 - x = 3x + 1

<=> - x - 3x = -2 + 1

<=> -4x = -1

<=> x = 1/4

Vậy x = 1/4 là nghiệm phương trình.

4x + 7( x - 2 ) = -9x + 5

<=> 4x + 7x - 14 = -9x + 5

<=> 4x + 7x + 9x = 14 + 5

<=> 20x = 19

<=> x = 19/20

Vậy x = 19/20 là nghiệm phương trình.

5x - 2( 3x - 5 ) = 7x + 11

<=> 5x - 6x + 10 = 7x + 11

<=> 5x - 6x - 7x = 11 - 10

<=> -8x = -21

<=> x = 21/8

Vậy x = 21/8 là nghiệm phương trình.

( 5x + 2 )( x - 7 ) = 0

<=> \(\left[{}\begin{matrix}5x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{5}\\x=7\end{matrix}\right.\)

Vậy tập nghiệm phương trình S = { -2/5; 7 }

2x( x - 5 ) + 3( x - 5 ) = 0

<=> ( 2x + 3 )( x - 5 ) = 0

<=> \(\left[{}\begin{matrix}2x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=5\end{matrix}\right.\)

Vậy tập nghiệm phương trìh S = { -3/2; 5 }

\(\frac{5x-3}{6}=\frac{-2x+5}{9}\)

\(\Rightarrow6\left(-2x+5\right)=9\left(5x-3\right)\)

\(\Leftrightarrow-12x+30=45x-27\)

\(\Leftrightarrow-57x=-57\)

\(\Leftrightarrow x=1\)

Vậy x = 1 là nghiệm phương trình.

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{5x}{6}\)

\(\Leftrightarrow2x-3\left(2x+1\right)=5x\)

\(\Leftrightarrow2x-6x-3=5x\)

\(\Leftrightarrow-9x=3\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy x = -1/3 là nghiệm phương trình.

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow2x-6x-3=x-6x\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\frac{3}{2}\)

Vậy x = 3/2 là nghiệm phương trình.

\(\frac{3}{x+1}=\frac{5}{2x+2}\) ĐKXĐ: x khác 1

<=> \(\frac{6}{2x+2}=\frac{5}{2x+2}\)( vô lí )

Vậy phương trình trên vô nghiệm.

# Học tốt #

Bài 1:

ĐKXĐ: x≠1

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x^2+x-1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4x+4=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 2:

ĐKXĐ: x≠2; x≠3; \(x\ne\frac{1}{2}\)

Ta có: \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-\left(2x+5\right)}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-2x-5}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(-x-4\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-12-x^2-2x+8=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(tm)

Vậy: x=-4

Bài 3:

ĐKXĐ: x≠1; x≠-1

Ta có: \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x-\frac{3x\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}-3x+\frac{3x\left(x-1\right)}{x+1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)-3x\left(x^2-1\right)+3x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-3x^3+3x+3x^3-6x^2+3x=0\)

\(\Leftrightarrow-6x^2+10x=0\)

\(\Leftrightarrow2x\left(-3x+5\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)

Bài 4:

ĐKXĐ: x≠1; x≠-3

Ta có: \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=0\)

\(\Leftrightarrow2x^2+6x+4-\left(2x^2-7x+5\right)=0\)

\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)

\(\Leftrightarrow13x-1=0\)

\(\Leftrightarrow13x=1\)

hay \(x=\frac{1}{13}\)(tm)

Vậy: \(x=\frac{1}{13}\)

Bài 5:

ĐKXĐ: x≠1; x≠-2

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)

\(\Leftrightarrow\frac{x+2}{\left(x-1\right)\left(x+2\right)}-\frac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{3}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x+2-7\left(x-1\right)-3=0\)

\(\Leftrightarrow x+2-7x+7-3=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Leftrightarrow-6\left(x-1\right)=0\)

Vì -6≠0

nên x-1=0

hay x=1(ktm)

Vậy: x∈∅

Bài 6:

ĐKXĐ: x≠4; x≠2

Ta có: \(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{6x-8-x^2}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{-\left(x^2-6x+8\right)}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^2+x-6+x^2-5x+4+2=0\)

\(\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 7:

ĐKXĐ: x≠1; x≠-2; x≠-1

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{7}{x+2}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{7\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2+3x+2-7\left(x^2-1\right)+3x+6=0\)

\(\Leftrightarrow x^2+3x+2-7x^2+7x+3x+6=0\)

\(\Leftrightarrow-6x^2+13x+8=0\)
\(\Leftrightarrow-6x^2+16x-3x+8=0\)

\(\Leftrightarrow2x\left(-3x+8\right)+\left(-3x+8\right)=0\)

\(\Leftrightarrow\left(-3x+8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+8=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{3};\frac{-1}{2}\right\}\)

25 tháng 3 2020

\( 1)\dfrac{1}{{x - 1}} + \dfrac{{2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{4}{{{x^2} + x + 1}}\\ DK:x \ne 1\\ \Leftrightarrow \dfrac{{{x^2} + x + 1 + 2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{{4\left( {x - 1} \right)}}{{{x^3} - 1}}\\ \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4x - 4\\ \Leftrightarrow 3{x^2} - 3x = 0\\ \Leftrightarrow 3x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\left( {tm} \right)\\ x = 1\left( {ktm} \right) \end{array} \right.\\ 2)\dfrac{{x + 4}}{{2{x^2} - 5x + 2}} + \dfrac{{x + 1}}{{2{x^2} - 7x + 3}} = \dfrac{{2x + 5}}{{2{x^2} - 7x + 3}}\\ + DK:x \ne \dfrac{1}{2};x \ne 2;x \ne 3\\ \Leftrightarrow \dfrac{{x + 4}}{{\left( {2x - 1} \right)\left( {x - 2} \right)}} + \dfrac{{x + 1}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \dfrac{{2x + 5}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}}\\ \Leftrightarrow \left( {x + 4} \right)\left( {x - 3} \right) + \left( {x + 1} \right)\left( {x - 2} \right) = \left( {2x + 5} \right)\left( {x - 2} \right)\\ \Leftrightarrow {x^2} + x - 12 + {x^2} - x - 2 = 2{x^2} + x - 10\\ \Leftrightarrow x = - 4\left( {tm} \right)\\ 3)\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = 3x\left( {1 - \dfrac{{x - 1}}{{x + 1}}} \right)\\ DK:x \ne \pm 1\\ \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {x - 1} \right)^2} = 3x\left( {x - 1} \right)\left( {x + 1 - x + 1} \right)\\ \Leftrightarrow {x^2} + 2x + 1 - {x^2} + 2x - 1 = 6x\left( {x - 1} \right)\\ \Leftrightarrow 4x = 6{x^2} - 6x\\ \Leftrightarrow 2x\left( {3x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{5}{3} \end{array} \right.\left( {tm} \right) \)

Còn lại tương tự mà làm nhé!

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

16 tháng 3 2020

a, \(\frac{4x+1}{2}-\frac{3x+2}{3}=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{12x+3-6x-4}{6}=\frac{6x-1}{6}\)

b, \(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}=\frac{x+3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x\left(x+1\right)}\)

\(=\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1}{x\left(x-1\right)}\)

\(\frac{4x+1}{2}-\frac{3x+2}{3}\)

\(=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{6x-1}{6}\)

tương tự đến hết nha a hay cj gì đps ! 

14 tháng 4 2020

\(b.\frac{12}{x^2-4}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\left(dkxd:x\ne\pm2\right)\\ \Leftrightarrow\frac{12}{x^2-4}-\frac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\frac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\\\Leftrightarrow 12-x^2-3x-2+x^2+5x-14=0\\ \Leftrightarrow2x-4=0\\\Leftrightarrow 2\left(x-2\right)=0\\\Leftrightarrow x-2=0\\\Leftrightarrow x=2\left(ktmdk\right)\)

Vô nghiệm

14 tháng 4 2020

\(a.\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\left(dkxd:x\ne\pm1\right)\\\Leftrightarrow \frac{\left(x+1\right)^2}{x^2-1}-\frac{\left(x-1\right)^2}{x^2-1}=\frac{16}{x^2-1}\\\Leftrightarrow \left(x+1\right)^2-\left(x-1\right)^2=16\\\Leftrightarrow \left(x+1-x+1\right)\left(x+1+x-1\right)-16=0\\\Leftrightarrow 4x-16=0\\\Leftrightarrow 4\left(x-4\right)=0\\\Leftrightarrow x-4=0\\ \Leftrightarrow x=4\left(tmdk\right)\)

20 tháng 1 2020

a) Điều kiện xác định: x khác 0, x khác 1/2

(x+3)(2x-1)/x(2x-1) = (2x+2)x/(2x-1)x

(x+3)(2x-1)=(2x+2)x

2x-x+6x-3 = 2x2 +2x

2x2 -x+6x-3-2x2 -2x = 0

3x-3=0

3x=3

x=1 ( thỏa mãn đièu kiện xác định)

Vậy phương trình dã cho có tập nghiệm là S=[1]

b) Điều kiện xác định: x khác -1

5x/2x+2 + 2x+2/2x+2 = -12/2x+2

5x+2x+2/2x+2 = -12/2x+2

7x+2/2x+2 = -12/2x+2

7x+2=-12

7x=-14

x=-2 ( thỏa mãn đièu kiện xác định)

Vậy phương trình đã cho có tập nghiệm là S=[-2]

c) Điều kiện xác định: x khác -1, x khác 0

(x+3)x/(x+1)x + (x-2)(x+1)/x(x+1) = 2x(x+1)/x(x+1)

(x+3)x+(x-2)(x+1)/x(x+1) = 2x(x+1)/x(x+1)

(x+3)x+(x-2)(x+1) = 2x(x+1)

x2 +3x+(x2 +x-2x-2)=2x2 +2x

x2 +3x+(x2 -x-2) = 2x2 +2x

x2 +3x+x2 -x-2=2x2 +2x

2x2 +2x-2=2x2 +2x

2x2 +2x-2-2x2 -2x=0

0x-2=0 ( vô lý)

Vậy phương trình này vô nghiệm 

bài này thực ra mk làm ở trên lớp rùi nên mk mới trả lời 

hok tot

20 tháng 1 2020

mk quên ko nói: bạn cho dấu tương đương vào trước mỗi dòng giải phương trình nhé

19 tháng 4 2020
https://i.imgur.com/wgXaoMx.jpg
15 tháng 4 2020

1, Đk x≠2;-2

\(\frac{x+2}{2x-4}-\frac{4x}{x^2-4}=0\\ =>\frac{x+2}{2\left(x-2\right)}-\frac{4x}{\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{\left(x+2\right)^2}{2\left(x^2-4\right)}-\frac{8x}{2\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{x^2+4x+4-8x}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x^2-4x+4}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x-2}{2\left(x+2\right)}=0\\ =>x-2=0\\ =>x=2\left(loại\right)\)