\(\frac{2n+1}{n-1}\)(Với n khác 1) Ai giải đc giúp e,e cần kq gấp

Tương tự câu trên...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

4 tháng 3 2017

a) n =6

b) n=1

c) -1

d) n=1

e) n=1

4 tháng 3 2017

a)  \(\frac{7}{2n+1}\)có giá trị nguyên \(\Leftrightarrow\) \(7\)\(⋮\) \(2n+1\)\(\Rightarrow\)\(2n+1\)\(\in\)\(Ư\left(7\right)=\left[1;7;-1;-7\right]\)

\(\Rightarrow2n\in\left[0;6;-2;-8\right]\)\(\Rightarrow n\in\left[0;3;-1;-4\right]\)

b) \(\frac{4}{3n+2}\)có giá trị nguyên \(\Leftrightarrow4⋮3n+2\Rightarrow3n+2\inƯ\left(4\right)=\left[1;2;4;-1;-2;-4\right]\)\(\Rightarrow3n\in\left\{-1;0;2;-3;-4;-6\right\}\)\(\Rightarrow n\in\left[\frac{-1}{3};0;\frac{2}{3};-1;\frac{-4}{3};-2\right]\). Mà \(n\in Z\Rightarrow n\in\left[0;-1;-2\right]\)

c) \(\frac{n+1}{n+5}\)cos giá trị nguyên \(\Leftrightarrow n+1⋮n+5\Rightarrow n+1-\left(n+5\right)⋮n+5\Leftrightarrow n+1-n-5⋮n+5\Rightarrow-4⋮n+5\)

\(\Rightarrow n+5\in\left[1;4;-1;-4\right]\Rightarrow n\in\left[-4;-1;-6;-9\right]\)

d) \(\frac{2n+15}{2n-1}\in Z\Leftrightarrow2n+15⋮2n-1\Rightarrow2n+15-\left(2n-1\right)⋮2n-1\Rightarrow2n+15-2n+1⋮2n-1\)

\(\Rightarrow16⋮2n-1\Rightarrow2n-1\inƯ\left(16\right)=\left[1;2;4;8;16;-1;-2;-4;-8;-16\right]\)

\(\Rightarrow2n\in\left[2;3;5;9;17;0;-1;-3;-7;-15\right]\)\(\Rightarrow n\in\left[1;0\right]\)

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....

18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)

17 tháng 3 2020

Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)

\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)

\(\Leftrightarrow6n-9+11⋮2n-3\)

Ta thấy \(6n-9⋮2n-3\forall n\)

\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)

\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)

\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)

...

a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)

\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)

\(\Rightarrow3n-9-3n+12⋮n-4\)

\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)

\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)

\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)

b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)

\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)

\(\Rightarrow6n+5-6n+3⋮2n-1\)

\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)

Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

8 tháng 6 2019

* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4 

Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4 

Mà 3. ( n - 4 ) chia hết cho n - 4  

     3 . ( n - 4 ) + 21 chia hết cho n - 4  <=> 21 chia hết cho n - 4 

=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 } 

n - 4 = 1 => n = 5 

n - 4 = 3 => n = 7 

n - 4 = 7 => n = 11 

n - 4 = 21 => n = 25 

Vậy n = { 5 ; 7 ; 11 ; 25 }