Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{27\left(18+103-120\right)}{33\left(15+12\right)}\)
\(=\frac{27\times1}{33\times27}\)
\(=\frac{1}{33}\)
\(\frac{27\cdot18+27\cdot103-120\cdot27}{15\cdot33+33\cdot12}\)
\(=\frac{27\left(18+103-120\right)}{33\cdot\left(15+12\right)}\)
\(=\frac{27}{33\cdot3}=\frac{27}{99}\)
\(=\frac{3}{11}\)
Đề bài : Tính
\(\frac{27.18+27.103-120.27}{15.33+33.12}\)
\(=\frac{27\left(18+103-120\right)}{33\left(15+12\right)}\)
\(=\frac{27}{33.27}\)
\(=\frac{1}{33}.\)
Ta có :
\(A=\frac{1}{1\cdot300}+\frac{1}{2\cdot301}+...+\frac{1}{101\cdot400}\)
\(\Rightarrow299A=\frac{299}{1\cdot300}+\frac{299}{2\cdot301}+...+\frac{299}{101\cdot400}\)
\(\Rightarrow299A=1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}=C\)
\(\Rightarrow A=\frac{C}{299}\)
Lại có :
\(B=\frac{1}{1\cdot102}+\frac{1}{2\cdot103}+\frac{1}{3\cdot104}+...+\frac{1}{299\cdot400}\)
\(\Rightarrow101B=\frac{101}{1\cdot102}+\frac{101}{2\cdot103}+...+\frac{101}{299\cdot400}\)
\(\Rightarrow101B=1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\)
\(\Rightarrow101B=\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)\)
\(\Rightarrow B=\frac{C}{101}\)
\(\Rightarrow\frac{A}{B}=\frac{101}{299}\)
kiroto hỏi và asuna trả lời . Không biết có phải trùng hợp ngẫu nhiên không ta
(x-13)/87+(x-27)/73+(x-67)/33+(x-73)/27=4
=>(x-13-87)/87+(x-27-73)/73+(x-67-33)/33+(x-73-27)/27=4-1-1-1-1
=>(x-100)/87+(x-100)/73+(x-100)/33+(x-100)/27=0
=>(x-100)*(1/87+1/73+1/33+1/27)=0
=>x-100=0
=>x=100
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\frac{1}{10.11}+7.\frac{1}{11.12}+7.\frac{1}{12.13}+...+7.\frac{1}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
\(A=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=\frac{6}{70}\)
\(=\frac{3}{35}\)
299A=\(\frac{299}{1\cdot300}+\frac{299}{2\cdot301}+...+\frac{299}{101\cdot400}\)
299A=\(1-\frac{1}{300}+\frac{1}{300}-\frac{1}{301}-...-\frac{1}{101}+\frac{1}{101}-\frac{1}{400}\)
299A=\(1-\frac{1}{400}\)
299A=\(\frac{399}{400}\)
A=\(\frac{399}{400}:299\)
A=\(\frac{119310}{400}\)
tương tự tính câu B
Ta có: \(A=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\)
\(\Rightarrow A=\frac{1}{399}.\left(\frac{299}{1.300}+\frac{299}{2.301}+\frac{299}{3.302}+...+\frac{299}{101.400}\right)\)
\(\Rightarrow A=\frac{1}{299.}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{302}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(\Rightarrow A=\frac{1}{299}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+..+\frac{1}{401}\right)\right]\)
Mặt khác \(B=\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
\(\Rightarrow B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\)
\(\Rightarrow B=\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{203}+...+\frac{1}{400}\right)\right]\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}.\left[\left(1+\frac{1}{2}+..+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}{\frac{1}{101}.\left[\left(1+\frac{1}{2}+....+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}\)
\(=\frac{1}{299}:\frac{1}{101}=\frac{101}{299}\)
Gọi tử số là \(C\)và mẫu số là \(D\)
Ta có:
\(A=\frac{C}{D}\)
\(C=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.102}+...+\frac{1}{101.400}\)
\(C=\frac{1}{299}\left[\left(1-\frac{1}{300}\right)\right]+\left(\frac{1}{2}-\frac{1}{301}\right)+\left(\frac{1}{3}-\frac{1}{302}\right)+...+\left(\frac{1}{101}-\frac{1}{400}\right)\)
\(C=\frac{1}{299}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)\)
\(D=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)
\(D=\frac{1}{101}\left[\left(1-\frac{1}{102}\right)+\left(\frac{1}{2}-\frac{1}{103}\right)+\left(\frac{1}{3}-\frac{1}{104}\right)+...+\left(\frac{1}{299}-\frac{1}{400}\right)\right]\)
\(D=\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-\frac{1}{104}-...-\frac{1}{400}\right)\)
\(D=\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)\)
\(\Rightarrow A=\frac{C}{D}=\frac{\frac{1}{299}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)}{\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)}\)
\(=\frac{\frac{1}{299}}{\frac{1}{101}}=\frac{101}{299}.\)
Vậy \(A=\frac{101}{299}.\)
\(\frac{27.18+27.103-27.102}{15.33+33.12}=\frac{27\left(18+103-102\right)}{33\left(15+12\right)}\)
\(=\frac{27.19}{33.27}=\frac{19}{33}\)
k nha
\(\frac{27.18+27.103-27.102}{15.33+33.12}=\frac{27.\left(18+103-102\right)}{33.\left(15+12\right)}=\frac{27.19}{33.27}=\frac{19}{33}\)