Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho sửa lại đề bài với ạ đề bài bài 1 là rút gọn biểu thức
2. a)
\(P=\left(\dfrac{3}{x+1}+\dfrac{1}{\sqrt{x+1}}\right):\dfrac{1}{\sqrt{x+1}}\)
\(=\left(\dfrac{3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x+1}}\right).\sqrt{x+1}\)
\(=\dfrac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\sqrt{x+1}\)
\(=\dfrac{2+\sqrt{x}}{x-1}\)
b)\(P\left(16\right)=\dfrac{2+\sqrt{16}}{16-1}=\dfrac{6}{15}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
a) M\(=\frac{x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}-1}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(=\frac{x}{\sqrt{x}+1}\)
b) Khi \(x=7+4\sqrt{3}\Rightarrow\frac{7+4\sqrt{3}}{\sqrt{\left(2+\sqrt{3}\right)^2}+1}=\frac{7+4\sqrt{3}}{3+\sqrt{3}}\)
c)\(M=\frac{1}{2}\Leftrightarrow\frac{x}{\sqrt{x}+1}=\frac{1}{2}\Leftrightarrow\sqrt{x}=2x-1\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x^2=4x^2-4x+1\Leftrightarrow3x^2-4x+1=0\Leftrightarrow\left(3x-1\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\\left[{}\begin{matrix}x=\frac{1}{3}\left(l\right)\\x=1\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(
1)Q = \left( {\dfrac{1}{{y - \sqrt y }} + \dfrac{1}{{\sqrt y - 1}}} \right):\left( {\dfrac{{\sqrt y + 1}}{{y - 2\sqrt y + 1}}} \right)\\
Q = \left( {\dfrac{1}{{\sqrt y \left( {\sqrt y - 1} \right)}} + \dfrac{1}{{\sqrt y - 1}}} \right).\dfrac{{y - 2\sqrt y + 1}}{{\sqrt y + 1}}\\
Q = \dfrac{{1 + \sqrt y }}{{\sqrt y \left( {\sqrt y - 1} \right)}}.\dfrac{{{{\left( {\sqrt y - 1} \right)}^2}}}{{\sqrt y + 1}}\\
Q = \dfrac{{\sqrt y - 1}}{{\sqrt y }}
\)
b) Thay \(y=3-2\sqrt{2}\) vào biểu thức ta được:
\(\dfrac{{\sqrt {3 - 2\sqrt 2 } - 1}}{{\sqrt {3 - 2\sqrt 2 } }} = \dfrac{{\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} - 1}}{{\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} }} = \dfrac{{ \sqrt 2 - 1-1}}{{\sqrt 2 -1}} \\= \dfrac{{\sqrt 2-2 }}{{ \sqrt 2 -1}} = \dfrac{{(\sqrt 2 -2)\left( { \sqrt 2+1 } \right)}}{{\left( { \sqrt 2-1 } \right)\left( {\sqrt 2+1 } \right)}} = - \sqrt 2 \)
\(2)B = \dfrac{{\sqrt y - 1}}{{{y^2} - y}}:\left( {\dfrac{1}{{\sqrt y }} - \dfrac{1}{{\sqrt y + 1}}} \right)\\ B = \dfrac{{\sqrt y - 1}}{{y\left( {y - 1} \right)}}:\dfrac{{\sqrt y + 1 - \sqrt y }}{{\sqrt y \left( {\sqrt y + 1} \right)}}\\ B = \dfrac{{\sqrt y - 1}}{{y\left( {\sqrt y - 1} \right)\left( {\sqrt y + 1} \right)}}:\dfrac{1}{{\sqrt y \left( {\sqrt y + 1} \right)}}\\ B = \dfrac{1}{{y\left( {\sqrt y + 1} \right)}}.\sqrt y \left( {\sqrt y + 1} \right)\\ B = \dfrac{{\sqrt y }}{y} \)
b) Thay \(y=3+2\sqrt{2}\) vào biểu thức ta được:
\(B = \dfrac{{\sqrt {3 + 2\sqrt 2 } }}{{3 + 2\sqrt 2 }} = \dfrac{{\sqrt {{{\left( {1 + \sqrt 2 } \right)}^2}} }}{{3 + 2\sqrt 2 }} = \dfrac{{\left( {1 + \sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}} = 3 - 2\sqrt 2 + 3\sqrt 2 - 4 = - 1 + \sqrt 2 \)
Nhiều quá @@
Bài 1 :
a) \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{12}=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}-\sqrt{4.3}=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-2\sqrt{3}=2\left(\sqrt{5}+\sqrt{3}\right)-2\sqrt{3}=2\sqrt{5}\)
b) \(\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}=\frac{\sqrt{9}}{\sqrt{4.2}}-\frac{\sqrt{49}}{\sqrt{2}}+\frac{\sqrt{25}}{\sqrt{9.2}}\)
\(=\frac{3}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)
\(=\frac{1}{\sqrt{2}}\left(\frac{3}{2}-7+\frac{5}{3}\right)\)
\(=\frac{1}{\sqrt{2}}.\left(-\frac{23}{6}\right)\)
\(=-\frac{23}{6\sqrt{2}}=-\frac{23\sqrt{2}}{12}\)
Bài 2 :
a) \(\frac{x}{\sqrt{x}-2}=-1\) (ĐKXĐ : \(x\ge0;x\ne4\))
\(\Leftrightarrow x=-\sqrt{x}+2\)
\(\Leftrightarrow x+\sqrt{x}-2=0\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\)
Ta có : t2 + t - 2 = 0
........ (Tìm t -> thay vào để tìm x -> đối chiếu với đkxđ -> kết luận)
b) \(\sqrt{x-2}=x-4\) (ĐKXĐ : \(x\ge4\))
\(\Leftrightarrow x-2=\left(x-4\right)^2\)
\(\Leftrightarrow x-2=x^2-8x+16\)
\(\Leftrightarrow x^2-8x+16-x+2=0\)
\(\Leftrightarrow x^2-9x+18=0\)
........ (Tìm x -> đối chiếu với đkxđ -> kết luận)
Bài 3:
a) \(PT\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\left(x\ge\frac{3}{2}\right)\)
\(\Leftrightarrow2x-3=4\left(x-1\right)\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(L\right)\)
PT vô nghiệm
b) \(PT\Leftrightarrow\left(x-1\right)=\sqrt{\left(x-1\right)^2}\left(x\ge1\right)\)
\(\Leftrightarrow x-1=\left|x-1\right|\). Do \(x\ge1\Rightarrow\left|x-1\right|=x-1\)
Suy ra PT <=> x - 1 = x -1
Vậy phương trình đúng với mọi nghiệm thõa mãn đk \(x\ge1\)
\(1.M=\dfrac{2\sqrt{y}}{x-y}+\dfrac{1}{\sqrt{x}-\sqrt{y}}+\dfrac{1}{\sqrt{x}+\sqrt{y}}=\dfrac{2\sqrt{y}+\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{2}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne y\right)\)
\(2a.N=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\left(x\ge0;x\ne9\right)\)
b. Thay x = 49 ( thỏa mãn ĐKXĐ ) vào biểu thức N , ta có :
\(N=\dfrac{3\sqrt{49}}{\sqrt{49}-3}=\dfrac{21}{4}\)
\(3.\dfrac{\sqrt{5}}{1-\sqrt{3}}-\sqrt{3}+\dfrac{1}{1+\sqrt{3}}=\dfrac{5\left(1+\sqrt{3}\right)+1-\sqrt{3}}{1-3}-\sqrt{3}=\dfrac{6+4\sqrt{3}+2\sqrt{3}}{-2}=\dfrac{6\left(\sqrt{3}+1\right)}{-2}=-3\left(\sqrt{3}+1\right)\)