Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)
=> \(\frac{2}{3}x=-\frac{29}{70}\)
=> \(x=-\frac{29}{70}:\frac{2}{3}\)
=> \(x=-\frac{29}{70}.\frac{3}{2}\)
=> \(x=-\frac{87}{140}\)
b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
=> \(-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
=> \(-\frac{21}{13}x=-\frac{3}{3}\)
=> \(-\frac{21}{13}x=1\)
=> \(x=1:\left(-\frac{21}{13}\right)\)
=> \(x=-\frac{13}{21}\)
c) \(\left|x-1,5\right|=2\)
=> \(\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.=>\left[{}\begin{matrix}x=2+1,5\\x=-2+1,5\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)(T/M)
d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
=> \(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
=> \(=>\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{1}{2}-\frac{3}{4}\\x=-\frac{1}{2}-\frac{3}{4}\end{matrix}\right.=>\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{matrix}\right.\)(T/M)
HỌC TỐT
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{29}{70}\)
\(\Leftrightarrow x=-\frac{29}{70}:\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{87}{140}\)
b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
\(\Leftrightarrow-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
\(\Leftrightarrow-\frac{21}{13}x=-1\)
\(\Leftrightarrow x=-1:\left(-\frac{21}{13}\right)\)
\(\Leftrightarrow x=\frac{13}{21}\)
c) \(\left|x-1,5\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)
d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=\frac{5}{4}\end{matrix}\right.\)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
a) \(\frac{4}{x+5}=\frac{3}{2x-1}\)
=> 4(2x - 1) = 3(x + 5)
=> 8x - 4 = 3x + 15
=> 8x - 3x = 15 + 4
=> 5x = 19
=> x = 19/5
b) \(\frac{x+11}{19}+\frac{x+12}{20}+\frac{x+13}{21}=3\)
=> \(\left(\frac{x+11}{19}-1\right)+\left(\frac{x+12}{20}-1\right)+\left(\frac{x+13}{21}-1\right)=0\)
=> \(\frac{x-8}{19}+\frac{x-8}{20}+\frac{x-8}{21}=0\)
=> \(\left(x-8\right)\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\right)=0\)
=> x - 8 = 0
=> x = 8
c) \(\left(2x-1\right)^2=\left(2x-1\right)^3\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^3=0\)
=> \(\left(2x-1\right)^2.\left[1-\left(2x-1\right)\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\1-2x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2-2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
a) 4/x + 3 = 3/2x - 1
<=> 4.(2x - 1) = (x + 3).3
<=> 8x - 4 = 3x + 9
<=> 8x = 3x + 9 + 4
<=> 8x = 3x + 13
<=> 8x - 3x = 13
<=> 5x = 13
<=> x = 13/5
=> x = 13/5
c) (2x - 1)2 = (2x - 1)3
<=> 4x2 - 4x + 1 = 8x3 - 12x2 + 6x - 1
<=> 8x3 - 12x2 + 6x - 1 = 4x2 - 4x + 1
<=> 8x3 - 12x2 + 6x - 1 - 1 = 4x2 - 4x
<=> 8x3 - 12x2 + 6x - 2x = 4x2 - 4x
<=> 8x3 - 12x2 + 6x - 2x - 4x = 4x2
<=> 8x3 - 12x2 + 10x - 2 = 4x2
<=> 8x3 - 12x2 + 10x - 2 - 4x2 = 0
<=> 8x2 - 16x2 + 10x - 2 = 0
<=> 2(x - 1)(2x - 1)2 = 0
<=> x - 1 = 0 hoặc 2x - 1 = 0
x = 0 + 1 2x = 0 + 1
x = 1 2x = 1
x = 1/2
=> x = 1 hoặc x = 1/2
Thực hiện phép tính ( bằng cách hợp lí nếu có thể):
a, \(5\frac{4}{13}.15\frac{3}{41}-5\frac{4}{13}.2\frac{3}{41}\)
\(=5\frac{4}{13}\left(15\frac{3}{41}-2\frac{3}{41}\right)\)
\(=15\frac{4}{13}\left(\frac{618}{41}-\frac{85}{41}\right)\)
\(=\frac{69}{13}.13\)
\(=69\)
b, \(6.\left(-\frac{1}{3}\right)^2-\left(\frac{1}{4}:2-\frac{7}{16}.\frac{-4}{21}\right)\)
\(=6.\frac{1}{9}-\left(\frac{1}{8}-\frac{-1}{12}\right)\)
\(=\frac{2}{3}-\left(\frac{3}{24}-\frac{-2}{24}\right)\)
\(=\frac{2}{3}-\frac{5}{24}\)
\(=\frac{16}{24}-\frac{5}{24}\)
\(=\frac{11}{24}\)
Chúc bạn hok tốt!!! lưu khánh huyền
a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)
= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)
= \(\frac{17}{9}-\frac{2}{3}\)
= \(\frac{11}{9}\)
b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)
= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)
= \(\frac{2}{5}.\frac{7}{12}\)
= \(\frac{7}{30}\)
Mình lười làm quá, hay mình nói kết quả cho bn thôi nha
c) -6
d) 3
e) 3
g) 12
h) \(\frac{23}{18}\)
i) \(\frac{-69}{20}\)
k) \(\frac{-1}{2}\)
l) \(\frac{49}{5}\)
\(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
\(-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
\(-\frac{21}{13}x=-1\)
\(x=\left(-1\right):\left(-\frac{21}{13}\right)\)
\(x=\frac{13}{21}\)
Vậy : \(x\in\left\{\frac{13}{21}\right\}\)
=.= hk tốt!!