Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{10^3+2.5^3+5^3}{65}=\frac{10^3+5^3.\left(2+1\right)}{65}=\frac{10^3+5^3.3}{65}\)
= \(\frac{10^3+375}{65}=\frac{1375}{65}\)
\(\frac{10^3+2.5^3+5^3}{65}=\frac{1000+2.125+125}{65}=\frac{8.125+2.125+125.1}{65}=\frac{125\left(8+2+1\right)}{65}=\frac{125.11}{65}=\frac{1375}{65}=\frac{275}{13}\)
\(\frac{10^3+2.5^3+5^3}{65}=\frac{1000+5^3.3}{65}=\frac{1000+375}{65}\)
= \(\frac{1375}{65}=\frac{275}{13}\)
\(\frac{10^3+2.5^5+5^3}{65}\)
= \(\frac{\left(2.5\right)^3+2.5^5+5^3}{5.13}\)
= \(\frac{2^3.5^3+2.5^5+5^3}{5.13}\)
= \(\frac{5^3\left(2^3+2+1\right)}{5.13}\)
= \(\frac{5^2.11}{13}\)
= \(\frac{275}{13}\)
\(a.\left(\frac{2}{5}\right)^5:\left(\frac{9}{25}\right)^5=\left(\frac{2\cdot25}{9\cdot5}\right)^5=\frac{10}{9}^5\)
\(b.25\cdot5^3\cdot\frac{1}{625}\cdot5^2=\frac{5^7}{5^4}=5^3\)
\(c.\frac{20^5\cdot5^{10}}{100^5}=\frac{2^{10}\cdot5^{15}}{2^{10}\cdot5^{10}}=5^5\)
\(d.\frac{1}{7}^2\cdot\frac{1}{7}\cdot49^2=\frac{7^4}{7^3}=7\)
a) 215.9466.83 =215.31236.26.29 =215.(32)436.315 =215.36.3236.315 =32=9
b) 310.11+310.539.24 =310(11+5)39.24 =39.3.2439.24 =3
a. \(\frac{20^5.5^{10}}{100^5}\)= \(\frac{20^5.5^{10}}{20^5.5^5}\)= \(5^5\)=\(3125\)
b. \(\frac{0,9^5}{0,3^6}\)= \(\frac{0,9^5}{0,3^5.0,3}\)= \(\left(\frac{0,9}{0,3}\right).\frac{1}{0,3}\)= \(243.\frac{1}{0,3}\)= \(810\)
c.\(\frac{6^3+3.6^2+3^3}{-13}=\frac{\left(3.2\right)^3+3.\left(3.2\right)^{^2}+3^3}{-13}=\frac{3^3.2^3+3.3^2.2^2+3^3}{-13}\)\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=3^3.\left(-1\right)=-27\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\frac{20^5.5^{10}}{100^5}=\frac{5^5.4^5.25^5}{100^5}=\frac{5^5.100^5}{100^5}=5^5=3125\)
\(\frac{20^5.5^{10}}{100^5}\)= \(\frac{5^5.4^5.5^5.5^5}{5^5.4^5.5^5}\)= \(5^5\)= \(3125\)