Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016+x}{x}+\frac{2520+x}{x}+\frac{3024+x}{x}=2523\)
\(\Leftrightarrow\frac{2016+x+2520+x+3024+x}{x}=2523\)
\(\Leftrightarrow\frac{7560+3x}{x}=\frac{2523x}{x}\)Khử mẫu : \(7560+3x=2523x\)
\(\Leftrightarrow7560=2520x\Leftrightarrow x=3\)
\(\Rightarrow\frac{2016}{x}+\frac{x}{x}+\frac{2520}{x}+\frac{x}{x}+\frac{3024}{x}+\frac{x}{x}=2523\)
\(\Rightarrow\frac{2016}{x}+\frac{2520}{x}+\frac{3024}{x}=2520\)
\(\Rightarrow\frac{1}{x}\left(2016+2520+3024\right)=2520\)
\(\Rightarrow x=3\)
Ta có: \(1\times\frac{1}{15}\times1\frac{1}{16}\times1\frac{1}{17}\times......\times1\frac{1}{2016}\times1\frac{1}{2017}\)
\(=\frac{1}{15}\times\frac{17}{16}\times\frac{18}{17}\times......\times\frac{2017}{2016}\times\frac{2018}{2017}\)
\(=\frac{1}{15}\times\frac{2018}{16}\)
\(=\frac{1009}{8\times15}\)
\(=\frac{1009}{120}\)
Mình nghĩ đề bài của bạn bị nhầm ở chỗ \(1\frac{1}{15}\)thành \(1\times\frac{1}{15}\)
Nhưng không sao bạn ạ
Vẫn giải được
Sửa đề \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4032}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\Leftrightarrow\frac{1}{x+1}=\frac{1}{4032}\)
\(\Leftrightarrow x+1=4032\Rightarrow x=4031\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2015}\right)\times\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2014}{2015}\times\frac{2015}{2016}\)
\(=\frac{1}{2016}\)
Giải : Ta có (1-1/2)*(1-1/3)*(1-1/4)*....*(1-1/2015)*(1-1/2016)
= 1* -(1/2+1/3+1/4+....+1/2015+1/2016)
= 1* - (1/2+1/2016 +1/3+1/2015 +...+1/1007)
= 1* -(1/2033134)
= -1/2033134
\(1\cdot\frac{1}{15}\cdot1\frac{1}{16}\cdot1\frac{1}{17}\cdot....\cdot1\frac{1}{2016}\cdot1\frac{1}{2017}\)
\(=\frac{1}{15}\cdot\frac{17}{16}\cdot\frac{18}{17}\cdot....\cdot\frac{2017}{2016}\cdot\frac{2018}{2017}\)
\(=\frac{1}{15}\cdot\frac{1}{16}\cdot2018\)
Dấu "." là dấu nhân nhé bn! phần còn lại bn làm tiếp nha
\(\frac{1}{6}.\frac{1}{3}+\frac{17}{6}.\frac{1}{3}+\frac{2015}{2016}-1\)
\(=\frac{1}{3}\left(\frac{1}{6}+\frac{17}{6}\right)+\frac{2015}{2016}-1\)
\(=\frac{1}{3}.3+\frac{2015}{2016}-1\)
\(=1-1+\frac{2015}{2016}=\frac{2015}{2016}\)
\(\frac{1}{6}\times\frac{1}{3}+\frac{17}{6}\times\frac{1}{3}+\frac{2015}{2016}-1\)
\(=\left(\frac{1}{6}+\frac{17}{6}\right)\times\frac{1}{3}+\frac{2015}{2016}-1\)
\(=3\times\frac{1}{3}+\frac{2015}{2016}-1\)
\(=1+\frac{2015}{2016}-1\)
\(=0+\frac{2015}{2016}=\frac{2015}{2016}\)
\(=\frac{2.3.4..2017}{1.2.3..2016}=\frac{2017}{1}=2017\)
\(\frac{2}{1}\cdot\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\cdot\frac{2017}{2016}\)
\(=\frac{2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot2017}{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016}\)
\(=\frac{2017}{1}=2017\)
\(\frac{2016+x}{x}+\frac{2520+x}{x}+\frac{3024+x}{x}=\frac{2016}{x}+\frac{x}{x}+\frac{2520}{x}+\frac{x}{x}+\frac{3024}{x}+\frac{x}{x}\)
\(=\frac{2016+2520+3024}{x}+3\)
\(=\frac{7560}{x}+3\)
\(\frac{7560}{x}+3=2523\)
\(\frac{7560}{x}=2520\)
\(x=\frac{7560}{2520}\)
\(x=3\)