\(\frac{2016+2017x2018}{2017x2019-1}\)   rút gọn phân số

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

= 1 nhé bạn

4 tháng 7 2018

\(\frac{2016+2017.2018}{2017.2019-1}\)

\(\frac{2016+2017.2018}{2017.2018+2017-1}\)

\(\frac{2016+2017.2018}{2017.2018+2016}\)

= 1

4 tháng 7 2018

\(\frac{2016+2017.2018}{2017.2019-1}\)

\(=\frac{\left(2016+1\right)+2017.2018-1}{2017.2019-1}\)

\(=\frac{2017+2017.2018-1}{2017.2019-1}\)

\(=\frac{2017.\left(1+2018\right)-1}{2017.2019-1}\)

\(=\frac{2017.2019-1}{2017.2019-1}=1\)

4 tháng 7 2018

\(\frac{2016+2017\times2018}{2017\times2019-1}\)

\(=\frac{2016+2017\times2018}{2017\times\left(2018+1\right)-1}\)

\(=\frac{2016+2017\times2018}{2017\times2018+2017-1}\)

\(=\frac{2016+2017\times2018}{2017\times2018+2016}\)

\(=1\)

__CHÚC BN HOK TỐT__

10 tháng 8 2016

 khá khó đấy

10 tháng 8 2016

mình ko hiểu quy luật mẫu số

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\left(\dfrac{2015}{2}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)+1}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}=\dfrac{1}{2017}\)

18 tháng 6 2020

1) Đặt: ( n + 9 ;  n - 6 ) = d  với d là số tự nhiên 

=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)

=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }

=> d có thể rút gọn cho số 3; 5; 15 

18 tháng 6 2020

2) Đặt: ( 18n + 3 ; 23n + 7 ) = d 

=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)

=> \(57⋮d\)

=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)

=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được  khi d = 3; d = 19 ; d = 57 

Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19 

Nên mình chỉ cần xác định n với d = 3 và d =19 

+) Với d = 3 

\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)

=> \(n+11⋮3\)

=> \(n-1⋮3\)

=>Tồn tại số tự nhiên k sao cho:  \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3

+) Với d = 19

\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)

=> \(n+11⋮19\Rightarrow n-8⋮19\)

=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19

Vậy n = 3k + 1 hoặc  n = 19k + 8 thì phân số sẽ rút gọn được.