\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+\frac{2011}{4}+\frac{2010}{5}+....+\frac{2}{2013}+\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

ở tử số ta làm thế này

\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)

\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)

\(\frac{TS}{MS}=2015\)

23 tháng 1 2018

Nhận xét : 

Quy luật : 

Mẫu là a thì số số hạng có mẫu a là a - 1 

Mẫu là 2 thì có 1 SH là 1/2

Mẫu là 3 thì có 3 - 1 = 2 số hạng là 1/3 và 2/3

<=> Ta có : 

1 + 2 + 3 +  ... + 10 = 55

Vậy số hạng thứ 60 thuộc dãy số có mẫu là 12 vì số 1 tương ứng với dãy \(M_2\),số 2 tương ứng với dãy \(M_3\)

=> Số 10 tương ứng với dãy \(M_{11}\)

Các số tiếp theo sau dãy \(M_{11}\):

\(M_{11};M_{12}=\frac{1}{11};\frac{2}{11};....;\frac{10}{11};\left(\frac{1}{12};\frac{2}{12};\frac{3}{12};\frac{4}{12};\frac{5}{12}\right);.....\)

Số hạng thứ 60 là số 5/12

24 tháng 1 2018

so thu 60 la 5/12

Đề có sai không bạn, mình thấy đề là \(\frac{2}{3}\times\frac{4}{5}+\frac{2}{3}\times\frac{1}{6}\)như vậy đúng hơn

26 tháng 7 2020

chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)

ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)

\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)

chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)

áp dụng bất đẳng thức Cauchy ta có: 

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)

ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)

kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

6 tháng 3 2017

hình như cái đề saisai sao ấy bạn ak ??????

tk tui nha 

mơn mọi người nhiều lắm !!!!!!!!

6 tháng 3 2017

= nha ban

25 tháng 10 2020

Anh chị cứu em

25 tháng 10 2020

:V toán lp 3 cơ ak 

A = \(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4347}\)

\(A\cdot3=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}\)

\(A\cdot3-A=\left(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4347}\right)\)

\(A\cdot2=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}-\frac{1}{2}-\frac{1}{6}-\frac{1}{18}-...-\frac{1}{4347}\)

\(A\cdot2=\frac{3}{2}-\frac{1}{4347}\)

\(A\cdot2=\frac{13039}{8694}\)

\(A=\frac{13039}{8694}:2\)

\(A=\frac{13039}{17388}\)

Kết quả hơi lớn nên kiểm tra lại đề :))

6 tháng 3 2018

\(\frac{3}{4}+\frac{1}{2}=\frac{3}{4}+\frac{2}{4}\)

\(=\frac{3+2}{4}=\frac{5}{4}\)

~HOk tốt~

6 tháng 3 2018

3/4 + 1/2

= 3/4 + 2/4

= 5/4

Chúc em học tốt !!!! 

3 tháng 2 2018

Vì \(\frac{1}{4}=\frac{1x4}{5x4}=\frac{4}{20}\)và \(\frac{2}{5}=\frac{2x4}{5x4}=\frac{8}{20}\)

Vì 4 < 5,6,7 < 8

=> Vậy phân số đó là : \(\frac{5}{20},\frac{6}{20},\frac{7}{20}\)

Nhưng vì phân số đó phải tối giản nên phân số cần tìm là : \(\frac{7}{20}\)

3 tháng 2 2018

\(\frac{1}{4}< \frac{a}{b}< \frac{2}{5}\)

\(\Leftrightarrow\frac{5}{20}< \frac{a}{b}< \frac{8}{20}\)

\(\Rightarrow\frac{a}{b}=\frac{6}{20};\frac{7}{20}\)

\(\Rightarrow\frac{a}{b}=\frac{3}{10};\frac{7}{20}\)