Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)\left(x^2-5x+4\right)=\left(x-2\right)\left(x^2-4x-x+4\right)=\left(x-2\right)\left(x-4\right)\left(x-1\right)< 0\)
khi đó có số số lẻ số <0
\(+,1\text{ số bé hơn 0}\Rightarrow x-4< 0;x-2>0\Leftrightarrow2< x< 4\)
\(+,3\text{ số bé hơn 0}\Rightarrow x-4< 0\Leftrightarrow x< 4\)
vậy 2<x<4 hoặc x<4
TH1, x-2>0 ->x>2 (1) từ (1), (2) -> x>2 (*)
x^2-5x+4<0 ->x(x-5)< -4 (2)
TH2, x-2<0 -> x<2 (3) Từ (3), (4) -> 2<x<5 -> x thuộc { 3;4} (**)
x^2-5x+4 > 0 -> x(x-5) > -4 -> x> 5 (4)
Từ (*); (**) -> x>2
b , \(\sqrt{1-4x+4x^2}-3=0\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=3\)
\(\Leftrightarrow\left|1-2x\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=2\\-2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy nghiệm của phương trình là \(S=\left\{-1,2\right\}\)
b)để có giá trị số nguyên thì :
x+3 chia hết x-2
suy ra (x-2)+5 chia hết x-2
mà x-2 chia hết x-2
vậy x thuộc ước của -5
U(-5)=1 ; 5 ; -1 ; -5
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
ĐK: \(x^4-4x^3+14x-11\ge0\) (*)
\(PT\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3+14x-11=x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^4-4x^3-x^2+16x-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)(tm)
e/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow x+3-\sqrt{x-1}=4\)
\(\Leftrightarrow\sqrt{x-1}=x-1\)
\(\Leftrightarrow x-1=x^2-2x+1\)
\(\Leftrightarrow x^2-3x+2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
f/ \(\Leftrightarrow\left\{{}\begin{matrix}x+5\ge0\\x^3+x^2+6x+28=\left(x+5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x^3-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\\left(x-1\right)\left(x^2+x-3\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1\pm\sqrt{13}}{2}\\\end{matrix}\right.\)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\x\ne2\\x\ne\frac{1\pm\sqrt{5}}{2}\end{matrix}\right.\)
Đặt \(x^2-x-1=a\) ta được:
\(\frac{4}{a-1}+\frac{2}{a}=5\Leftrightarrow4a+2\left(a-1\right)=5a\left(a-1\right)\)
\(\Leftrightarrow5a^2-11a+2=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x-1=2\\x^2-x-1=\frac{1}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\5x^2-5x-6=0\end{matrix}\right.\) (bấm máy)
b/ ĐKXĐ: \(x>2\)
Đặt \(\sqrt{x-2}=a>0\)
\(\frac{4}{a+1}-\frac{1}{a}=1\Leftrightarrow4a-\left(a+1\right)=a\left(a+1\right)\)
\(\Leftrightarrow a^2-2a+1=0\Rightarrow a=1\)
\(\Rightarrow\sqrt{x-2}=1\Rightarrow x=3\)
c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\frac{4}{9}\end{matrix}\right.\)
\(\Leftrightarrow4\left(2-3\sqrt{x}\right)-\left(\sqrt{x}+1\right)=3\left(\sqrt{x}+1\right)\left(2-3\sqrt{x}\right)\)
\(\Leftrightarrow9x-10\sqrt{x}+1=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=\frac{1}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{81}\end{matrix}\right.\)
a/ ĐKXĐ: \(x\ne-1\)
\(\Leftrightarrow4\left(3-7x\right)=x+1\)
\(\Leftrightarrow12-28x=x+1\)
\(\Rightarrow29x=11\Rightarrow x=\frac{11}{29}\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
\(\Leftrightarrow1-\left(\sqrt{x}-2\right)=3-\sqrt{x}\)
\(\Leftrightarrow3=3\) (luôn đúng)
Vậy nghiệm của pt là \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne7\)
\(\Leftrightarrow8-x-8\left(x-7\right)=1\)
\(\Leftrightarrow8-x-8x+56=1\)
\(\Leftrightarrow-9x=-63\Rightarrow x=7\left(ktm\right)\)
Vậy pt vô nghiệm
d/ ĐKXĐ: \(x\ne4\)
\(\Leftrightarrow\frac{28}{6\left(x-4\right)}-\frac{6\left(x+2\right)}{6\left(x-4\right)}=\frac{-9}{6\left(x-4\right)}-\frac{5\left(x-4\right)}{6\left(x-4\right)}\)
\(\Leftrightarrow28-6x-12=-9-5x+20\)
\(\Rightarrow x=5\)
e/ ĐKXĐ: \(x\ne\left\{-\frac{2}{3};\frac{1}{3}\right\}\)
\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow3x=-15\Rightarrow x=-5\)