Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
A=1.2.3+2.3.4+3.4.5+...+98.99.100
a, Vào câu hỏi tương tự nhé
b, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|x+1\right|\ge0\Rightarrow3x\ge0\Rightarrow x\ge0}\)
=> x+3+x+1=3x
=> 2x+4=3x
=>x=4
c, \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
Có \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)
=>\(\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
=> \(2005\ge4-x+10-x+x+990+x+1000+\left|x+101\right|\)
=> \(2005\ge\left|x+101\right|+2004\)
=> \(\left|x+101\right|\le1\)
=> \(x+101\in\left\{-1;0;1\right\}\Rightarrow x\in\left\{-102;-101;-100\right\}\)
d, tương tự b
a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)
\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)
\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)
\(\Rightarrow x=-\frac{43}{28}\)
Vậy \(x=-\frac{43}{28}.\)
b) \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=20+5\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}.\)
d) \(\frac{x-6}{4}=\frac{4}{x-6}\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)
\(\Rightarrow\left(x-6\right)^2=16\)
\(\Rightarrow x-6=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{10;2\right\}.\)
Chúc bạn học tốt!
\(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\)
\(x+\frac{1}{8}=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{1}{8}\)
\(x=\frac{4}{16}-\frac{2}{16}\)
\(x=\frac{1}{8}\)
Vậy \(x=\frac{1}{8}\)
b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\)
\(\frac{8}{27}-x=\frac{1}{3}\)
\(x=\frac{8}{27}-\frac{1}{3}\)
\(x=\frac{8}{27}-\frac{9}{27}\)
\(x=-\frac{1}{27}\)
Vậy \(x=-\frac{1}{27}\)
c) \(x.\left(-\frac{1}{2}\right)^4=\frac{3}{8}\)
\(x.\frac{1}{16}=\frac{3}{8}\)
\(x=\frac{3}{8}:\frac{1}{16}\)
\(x=\frac{3}{8}.16\)
\(x=6\)
c) \(\left(\frac{1}{2}\right)^3.x=\left(\frac{1}{2}\right)^5\)
\(x=\left(\frac{1}{2}\right)^5:\left(\frac{1}{2}\right)^3\)
\(x=\left(\frac{1}{2}\right)^2\)
\(x=\frac{1}{4}\)
Vậy \(x=\frac{1}{4}\)
Chúc bạn học tốt !!!
a) \(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\Leftrightarrow x+\frac{1}{8}=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}-\frac{1}{8}\Leftrightarrow x=\frac{1}{8}\)
b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\Leftrightarrow\frac{8}{27}-x=\frac{1}{3}\Leftrightarrow-x=\frac{1}{3}-\frac{8}{27}\Leftrightarrow-x=\frac{1}{27}\Leftrightarrow x=-\frac{1}{27}\)
c) \(x.\left(\frac{-1}{2}\right)^4=\frac{3}{8}\Leftrightarrow x.\frac{1}{16}=\frac{3}{8}\Leftrightarrow x=\frac{3}{8}:\frac{1}{16}\Leftrightarrow x=6\)
d) \(\left(\frac{1}{2}\right)^2.x=\left(\frac{1}{2}\right)^5\Leftrightarrow\frac{1}{8}.x=\frac{1}{32}\Leftrightarrow x=\frac{1}{32}:\frac{1}{8}\Leftrightarrow x=\frac{1}{4}\)
1/ x.(x+1)+1/(x+1).(x+2)+1/(x+2).(x+3)-1/x=1/2016
1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)-1/x=1/2016
1/x-1/(x+3)-1/x=1/2016
(1/x-1/x)-1/(x+3)=1/2016
0-1/(x+3)=1/2016
=>-1/(x+3)=1/2016
=>1/(x+3)=-1/2016
=>x+3=-2016
=>x=-2016-3
x=-2019
Vậy x=-2019
Hok tốt
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2016}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2016}\)
\(\Leftrightarrow\frac{-1}{x+3}=\frac{1}{2016}\)
\(\Leftrightarrow x+3=-2016\)
\(\Leftrightarrow x=-2019\)