
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(\frac{2}{x-3}\) ≤ \(\frac23\)
\(\frac{1}{x-3}\) ≤ \(\frac13\)
\(\frac{1}{x-3}-\frac13\) ≤ 0
\(\frac{3-x+3}{3\left(x-3\right)}\) ≤ 0
\(\frac{\left(3+3\right)-x}{3\left(x-3\right)}\) ≤ 0
\(\frac{6-x}{3\left(x-3\right)}\) ≤ 0
6 - \(x\) = 0 ⇒ \(x=6\); \(x-3=0\) ⇒ \(x=3\)
Lập bảng xét dấu ta có:
\(x\) | 3 6 |
-\(x+6\) | + + 0 - |
3\(x\) - 9 | - 0 + + |
3(\(\)\(x-3).\left(-x+6\right)\) | - || + 0 - |
Theo bảng trên ta có: \(x\) ≥ 6 hoặc \(x\) < 3


Chỉ có biến đổi tương đương:
\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\le\frac{2}{1+xy}\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\le2\left(1+x^2\right)\left(1+y^2\right)\)
\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy\le2+2x^2+2y^2+2x^2y^2\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)\le0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\le0\) (luôn đúng với mọi \(xy\le1\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
b/ Tính chất của z ở câu b là gì bạn? z bất kì là ko được đâu, hơn nữa mẫu số của vế phải thấy hơi kì quặc

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ
