Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
a,Sử dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)
\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
Do đó ta có:
\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)
Tương tự ta có:
\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)
Do đó biểu thức sẽ bằng:
\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)
Áp dụng tính chất tỉ lệ thức có:
(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1
=>y+z-x=x ; z+x-y=y và x+y-z=z
Do đó ta có:
(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y
Tương tự có:
1 + y/z=2x/z và 1 + z/x =2y/x
Do đó biểu thức sẽ bằng :
2x/z . 2y/x . 2z/y = 8xyz/xyz =8
Với \(x+y+z=0\) \(\Rightarrow x=y=z=0\) (trái với đk đề bài)
Với \(x+y+z\ne0\),áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\)
Mà x+y+z=1/2. Thay vào tìm đc x;y;z =]]
a) \(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\\= (x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+2019\\=x^2(x+y-2)-y(x+y-2)+(x+y-2)+2019\\=x^2.0-y.0+0+2019=2019\)
c) +) Với \(x + y + z = 0\) thì \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{(-z)}{y} \cdot \dfrac{(-x)}z \cdot \dfrac{(-y)}x = -1\)
+) Với \(x + y + z \ne 0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{y+z-x}x = \dfrac{z+x-y}y = \dfrac{x+y-z}z = \dfrac{y+z-x+z+x-y+x+y-z}{x+y+z} = \dfrac{x+y+z}{x+y+z} =1\)
Ta có \(\dfrac{y+z-x}x = 1 \iff y+z-x = x \iff y+z = 2x\)
Tương tự : \(z+x = 2y ; x + y = 2z\)
Kh đó \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{2z}{y} \cdot \dfrac{2x}z \cdot \dfrac{2y}x = 8\)
Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) vì a + b + c = 1
Do đó \((x+y+z)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)vì \(a^2+b^2+c^2=1\)
Vậy :
x;y;z có 2 giá trị: \(x=\frac{1}{2};y=\frac{1}{2};z=\frac{-1}{2}\) và \(x=0;y=0;z=0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y+y+z+z+x}{z+x+y}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
mà \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}=k\)
nên k=2
Vậy: k=2
=> x+y/xy =1/3 =>3.[(x-3)+3]=(x-3).y TH1:x-3=1;y-3=9 TH3:x-3= -1;y-3= -9 Vậy{x;y}={4;12};{6;6};{2;-6}
=>(x+y).3=xy =>3.(x-3)+9=(x-3).y =>x=4;y=12(TM) =>x=2;y= -6(TM)
=>3x + 3y=xy =>9=(x-3)(y-3) TH2:x-3=3;y-3=3 TH4:x-3=3;y-3=3
=>3x=xy-3y =>x-3;y-3 thuộc Ư(9) =>x=6;y=6(TM) =>x=0;y=0(L)
=>3x=(x-3).y