Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha
a: \(=\dfrac{4}{x+2}-\dfrac{3}{x-2}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
b: \(=\dfrac{6x+3\left(x-1\right)+2\left(x-2\right)}{6}=\dfrac{6x+3x-3+2x-4}{6}=\dfrac{11x-7}{6}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)
\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)
\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)
\(15-20x+6x-12=0\)
\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn
bạn không ghi yêu cầu nên mình làm như này
1) \(\frac{1}{x-3}\) và \(\frac{5}{x^2-3x}\)
Ta có: \(1.\left(x^2-3x\right)=x^2-3x\)
\(\left(x-3\right).5=5x-15\)
\(\Rightarrow x^2-3x\ne5x-15\)
\(\Rightarrow1.\left(x^2-3x\right)\ne\left(x-3\right).5\)
Vậy: \(\frac{1}{x-3}\ne\frac{5}{x^2-3x}\)
2) \(\frac{x}{x^2+x}\) và \(\frac{2}{x-1}\) và \(\frac{x+2}{x^2-1}\)
Ta có: \(x.\left(x-1\right)=x^2-x\)
\(2.\left(x^2+x\right)=2x^2+2x\)
\(\Rightarrow x^2-x\ne2x^2+2x\)
\(\Rightarrow x.\left(x-1\right)\ne2.\left(x^2+x\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{2}{x-1}\) (1)
Ta lại có: \(2.\left(x^2-1\right)=2x^2-2\)
\(\left(x-1\right)\left(x+2\right)=x^2+2x-x-2\)
\(=x^2-x-2\)
\(\Rightarrow2x^2-2\ne x^2-x-2\)
\(\Rightarrow2.\left(x^2-1\right)\ne\left(x-1\right)\left(x+2\right)\)
\(\Rightarrow\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\) (2)
Từ (1) và (2) => \(\frac{x}{x^2+x}\ne\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\)
3) \(\frac{1-3x}{2x}\) và \(\frac{3x-2}{2x-1}\) và \(\frac{3x-2}{4x^2-2x}\)
Ta có:\(\left(1-3x\right)\left(2x-1\right)=2x-1-6x^2+3x\)
\(=5x-1-6x^2\)
\(2x.\left(3x-2\right)=6x^2-4x\)
\(\Rightarrow5x-1-6x^2\ne6x^2-4x\)
\(\Rightarrow\left(1-3x\right)\left(2x-1\right)\ne2x\left(3x-2\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\)(1)
Ta lại có: \(\left(3x-2\right)\left(4x^2-2x\right)=12x^2-6x^2-8x^2+4x\)
\(=12x^3-14x^2+4x\)
\(\left(2x-1\right)\left(3x-2\right)=6x^2-4x-3x+2\)
\(=6x^2-7x+2\)
\(\Rightarrow12x^3-14x^2+4x\ne6x^2-7x+2\)
\(\Rightarrow\left(3x-2\right)\left(4x^2-2x\right)\ne\left(2x-1\right)\left(3x-2\right)\)
\(\Rightarrow\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\) (2)
Từ (1) và (2) => \(\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\)
a) \(\frac{4x-8}{2x^2+1}=0\)
\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2
b)
\(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
\(\Leftrightarrow\frac{x^2+x+1+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow x^2+x+1+2x^2-2x=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=-1\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=-1\)
Vậy .................
ĐKXĐ : \(x\ne1\)
Ta có : \(\frac{1}{x-1}+\frac{2x}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
\(\Leftrightarrow\frac{x^2+x+1+2x\left(x-1\right)}{x^3-1}=\frac{3x^2}{x^3-1}\)
=>\(x^2+x+1+2x^2-2x=3x^2\)
\(\Rightarrow3x^2+1-x=3x^2\)
\(\Rightarrow1-x=0\)
<=> x=1 ( không thỏa mãn Đkxđ)
Vậy x=\(\varnothing\)