\(\frac{1}{\text{x}^2+yz}+\frac{1}{y^2+\text{x}z}+\frac{1}{z^2+\text{x}y}\le\frac{1}{2}\left(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

đk: x;y;z dương nhé

áp dụng bđt cosi ta có:

\(x^2+yz>=2\sqrt{x^2yz}=2x\sqrt{yz};y^2+xz>=2\sqrt{y^2xz}=2y\sqrt{xz};z^2+xy=2\sqrt{z^2xy}=2z\sqrt{xy}\)

\(\Rightarrow\frac{1}{x^2+yz}< =\frac{1}{2x\sqrt{yz}};\frac{1}{y^2+xz}< =\frac{1}{2y\sqrt{xz}};\frac{1}{z^2+xy}< =\frac{1}{2z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}< =\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{1}{2}\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\left(1\right)\)

áp dụng bđt cosi ta có:

\(\frac{1}{xy}+\frac{1}{xz}>=2\cdot\sqrt{\frac{1}{xy}\cdot\frac{1}{xz}}=\frac{2}{x\sqrt{yz}};\frac{1}{xy}+\frac{1}{yz}>=2\cdot\sqrt{\frac{1}{xy}\cdot\frac{1}{yz}}=\frac{2}{y\sqrt{xz}};\)

\(\frac{1}{yz}+\frac{1}{xz}>=2\cdot\sqrt{\frac{1}{yz}\cdot\frac{1}{xz}}=\frac{2}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{xz}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{yz}+\frac{1}{xz}=\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}>=\frac{2}{x\sqrt{yz}}+\frac{2}{y\sqrt{xz}}+\frac{2}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}>=\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)>=\frac{1}{2}\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\left(2\right)\)

từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}>=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\left(đpcm\right)\)

dấu = xảy ra khi x=y=z

30 tháng 8 2018

nhầm từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}< =\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

8 tháng 8 2016

+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)

\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)

+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Áp dụng bđt Bunhiacopxki

\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)

\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)

(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Tương tự: \(xy^2+yz^2+zx^2\le3\)

\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)

\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)

8 tháng 8 2016

dvdfhfeye5

NV
9 tháng 8 2020

\(P=\frac{x\left(x+y+z\right)+yz}{y+z}+\frac{y\left(x+y+z\right)+zx}{z+x}+\frac{z\left(x+y+z\right)+xy}{x+y}\)

\(P=\frac{\left(x+y\right)\left(x+z\right)}{y+z}+\frac{\left(x+y\right)\left(y+z\right)}{z+x}+\frac{\left(x+z\right)\left(y+z\right)}{x+y}\)

\(P\ge\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=2\left(x+y+z\right)=2\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
19 tháng 1 2017

Bài này đơn giản thôi :))

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{x+y}{xy}=\frac{3}{2}\\ \frac{y+z}{yz}=\frac{2}{3}\\ \frac{x+z}{xz}=\frac{7}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{3}{2}\\ \frac{1}{y}+\frac{1}{z}=\frac{2}{3}\\ \frac{1}{x}+\frac{1}{z}=\frac{7}{6}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{2}{x}=\frac{3}{2}+\frac{7}{6}-\frac{2}{3}\\ \frac{2}{y}=\frac{3}{2}+\frac{2}{3}-\frac{7}{6}\\ \frac{2}{z}=\frac{2}{3}+\frac{7}{6}-\frac{3}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\\ z=6\end{matrix}\right.\)

Vậy $(x,y,z)=(1,2,6)$ là nghiệm của hệ phương trình

26 tháng 4 2020

Ta có \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\frac{\left(yz+1\right)^2}{z^2}}{\frac{zx+1}{x}}+\frac{\frac{\left(zx+1\right)^2}{x^2}}{\frac{xy+1}{y}}+\frac{\frac{\left(xy+1\right)^2}{y^2}}{\frac{yz+1}{z}}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}\ge\frac{\left(a_1+a_2+a_3\right)^2}{b_1+b_2+b_3}\)

Dấu "=" xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{c_3}\)

\(P=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)

\(P\ge a+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

=> \(P\ge x+y+z+\frac{9}{x+y+z}=\left[x+y+z+\frac{9}{4\left(x+y+z\right)}\right]+\frac{27}{4\left(x+y+z\right)}\)

Ta có: \(x+y+z+\frac{9}{4\left(x+y+z\right)}\ge2\sqrt{\frac{9}{4}}=3;\frac{27}{4\left(x+y+z\right)}=\frac{27}{4\cdot\frac{3}{2}}=\frac{9}{2}\)

=> \(P\ge3+\frac{9}{2}=\frac{15}{2}\).

Dấu "=" xảy ra <=> x=y=z=\(\frac{1}{2}\)

Vậy MinP=\(\frac{15}{2}\)đạt được khi x=y=z=\(\frac{1}{2}\)

26 tháng 4 2020

Ta có:

\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\left(\frac{yz+1}{z}\right)^2}{\left(\frac{zx+1}{x}\right)}+\frac{\left(\frac{zx+1}{x}\right)^2}{\left(\frac{xy+1}{y}\right)}+\frac{\left(\frac{xy+1}{y}\right)^2}{\left(\frac{yz+1}{z}\right)}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta có:

\(\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)\(\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\ge\left(x+y+z\right)+\frac{9}{x+y+z}=\left(x+y+z\right)+\frac{9}{4\left(x+y+z\right)}\)

\(+\frac{27}{4\left(x+y+z\right)}\ge2\sqrt{\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{15}{2}\)(Áp dụng BĐT Cô - si cho 2 số không âm)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

15 tháng 11 2017

Áp dụng bđt bunhiacopxki ta được \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\left(1+1+1\right)^2=9\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le10\)

15 tháng 11 2017

bu-nhi a đâu phả vậy đâu bn?