Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dk \(x\ge0\)
ap dung bdt cosi ta co
\(\sqrt{x+3}+\frac{4x}{\sqrt{x+3}}\ge2\sqrt{4x}=4\sqrt{x}\)
dau = xay ra \(\Leftrightarrow\sqrt{x+3}=\frac{4x}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Rightarrow x=1\)(tm dk)
kl x=1 la no cua pt
a)Đk:\(0\le x\le1\)
\(\sqrt{x}+\sqrt{1-x}+\sqrt{x+1}=2\)
\(pt\Leftrightarrow\sqrt{x}+\sqrt{1-x}-1+\sqrt{x+1}-1=0\)
\(\Leftrightarrow\sqrt{x}+\frac{1-x-1}{\sqrt{1-x}+1}+\frac{x+1-1}{\sqrt{x+1}-1}=0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}}-\frac{x}{\sqrt{1-x}+1}+\frac{x}{\sqrt{x+1}-1}=0\)
\(\Leftrightarrow x\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{1-x}+1}+\frac{1}{\sqrt{x+1}-1}\right)=0\)
\(\Rightarrow x=0\)
b)\(\frac{3x+3}{\sqrt{x}}=4+\frac{x+1}{\sqrt{x^2-x+1}}\)
\(pt\Leftrightarrow\frac{3x+3}{\sqrt{x}}-6=\frac{x+1}{\sqrt{x^2-x+1}}-2\)
\(\Leftrightarrow\frac{3x+3-6\sqrt{x}}{\sqrt{x}}=\frac{x+1-2\sqrt{x^2-x+1}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{\left(3x+3\right)^2-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{\left(x+1\right)^2-4\left(x^2-x+1\right)}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{9x^2+18x+9-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{x^2+2x+1-4x^2+4x-4}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{9x^2-18x+9}{3x+3+6\sqrt{x}}}{\sqrt{x}}-\frac{\frac{-3x^2+6x-3}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)
\(\Leftrightarrow\frac{\frac{9\left(x-1\right)^2}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{3\left(x-1\right)^2}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)
\(\Leftrightarrow3\left(x-1\right)^2\left(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\right)=0\)
Dêx thấy: \(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}>0\forall....\)
\(\Rightarrow3\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)
\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)
\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)
Pt trong ngoặc VN suy ra x=2
a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)
\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)
\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)
pt trong căn vô nghiệm
suy ra x=1; x=-1
2. a) \(ĐKXĐ:x\ge\frac{1}{3}\)
\(\sqrt{3x-1}=4\)\(\Rightarrow\left(\sqrt{3x-1}\right)^2=4^2\)
\(\Leftrightarrow3x-1=16\)\(\Leftrightarrow3x=17\)\(\Leftrightarrow x=\frac{17}{3}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{17}{3}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{x-1}=x-1\)\(\Rightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x-1=x^2-2x+1\)\(\Leftrightarrow x^2-2x+1-x+1=0\)
\(\Leftrightarrow x^2-3x+2=0\)\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)( thỏa mãn ĐKXĐ )
Vậy \(x=1\)hoặc \(x=2\)
3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)
Vì \(6>1\)\(\Leftrightarrow\sqrt{6}>\sqrt{1}=1\)\(\Rightarrow\sqrt{6}-1>0\)
\(6>4\)\(\Rightarrow\sqrt{6}>\sqrt{4}=2\)\(\Rightarrow\sqrt{6}-2>0\)
\(\Rightarrow\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|=\left(\sqrt{6}-1\right)-\left(\sqrt{6}-2\right)\)
\(=\sqrt{6}-1-\sqrt{6}+2=1\)
hay \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=1\)
2a) \(\sqrt{3x-1}=4\)( ĐKXĐ : \(x\ge\frac{1}{3}\))
Bình phương hai vế
\(\Leftrightarrow\left(\sqrt{3x-1}\right)^2=4^2\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
\(\Leftrightarrow x=\frac{17}{3}\)( tmđk )
Vậy phương trình có nghiệm duy nhất là x = 17/3
b) \(\sqrt{x-1}=x-1\)( ĐKXĐ : \(x\ge1\))
Bình phương hai vế
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x-1=x^2-2x+1\)
\(\Leftrightarrow x^2-2x+1-x+1=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)
Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2
3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)
\(=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}-\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot2+2^2}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}\)
\(=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)
\(=\sqrt{6}-1-\left(\sqrt{6}-2\right)\)
\(=\sqrt{6}-1-\sqrt{6}+2\)
\(=1\)
1)\(\sqrt{2x^2-2x+\frac{1}{2}}=\frac{1}{\sqrt{2}}\left(ĐKXĐ:x^2-x+\frac{1}{4}\ge0\right)\)
\(2x^2-2x+\frac{1}{2}=\frac{1}{2}\)
\(2x^2-2x=0\)
\(2x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
2)\(\sqrt{9x-9}-2\sqrt{\frac{x-1}{4}}=6\left(ĐKXĐ:x\ge1\right)\)
\(\sqrt{9\left(x-1\right)}-2.\frac{\sqrt{x-1}}{2}=6\)
\(3\sqrt{x-1}-\left(\sqrt{x-1}\right)=6\)
\(2\sqrt{x-1}=6\)
\(\sqrt{x-1}=3=\sqrt{9}\)
\(\Rightarrow x=10\)
4)\(1-3x+\sqrt{x^2-6x+9}=0\)
\(1-3x+\sqrt{\left(x-3\right)^2}=0\)
\(1-3x+x-3=0\)
\(x=-1\)
5)\(\frac{1}{2}\sqrt{\frac{3x+9}{4}}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{1}{2}.\frac{\sqrt{3x+9}}{2}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{\sqrt{3x+9}}{4}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{\sqrt{3x+9}+4\sqrt{x+3}}{4}=\frac{4\sqrt{1-x}}{4}\)
\(\Rightarrow\sqrt{3}.\sqrt{x+3}+4\sqrt{x+3}=4\sqrt{1-x}\)
\(\Rightarrow\left(\sqrt{3}+4\right)\left(\sqrt{x+3}\right)=\sqrt{2-2x}\)
6)\(\sqrt{4x^2-9}.\left(\sqrt{x+1}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x^2-9=0\\\sqrt{x+1}+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x^2=9\\\sqrt{x+1}=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
x=1 là nghiệm, nhân liên hợp dc bn mình làm nãy giờ mà ấn gửi nó báo Please_Sign_In nản luôn =="