Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\frac{10}{1}=10\)
mấy câu còn lại bạn tự làm nốt nhé mk ban rồi
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
c. \(\frac{2}{\sqrt{5}+\sqrt{3}}-\frac{3-\sqrt{15}}{\sqrt{5}-\sqrt{3}}\)
= \(\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\left(3-\sqrt{15}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
= \(\frac{2\sqrt{5}-2\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{3\sqrt{5}+3\sqrt{3}-5\sqrt{3}+3\sqrt{5}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
= \(\frac{2\sqrt{5}-2\sqrt{3}-3\sqrt{5}+3\sqrt{3}-5\sqrt{3}+3\sqrt{5}}{5-3}\)
= \(\frac{2\sqrt{5}-2\sqrt{3}-2\sqrt{3}}{2}\)
= \(\frac{2\sqrt{5}-4\sqrt{3}}{2}\)
mk chỉ bik cách lm như z thoy còn kết quả thì mk chưa chắc đã đúng đâu nên pn xem lại nhá
\(\frac{1}{\sqrt{5}-1}+\frac{1}{1+\sqrt{5}}\)
= \(\frac{1}{\sqrt{5}-1}-\frac{1}{\sqrt{5}+1}\)
= \(\frac{\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
= \(\frac{\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\frac{\sqrt{5}+1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
= \(\frac{2}{5-1}\)
= \(\frac{2}{4}\)
= \(\frac{1}{2}\)
A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Bài 2:
a) \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2-1}{\sqrt{1}+\sqrt{2}}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}=\sqrt{2}-\sqrt{1}\)
Tương tự ta có: \(\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\);
\(\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\); ............. ; \(\frac{1}{\sqrt{2024}+\sqrt{2025}}=\sqrt{2025}-\sqrt{2024}\)
\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{2025}-\sqrt{2024}\)
\(=\sqrt{2025}-\sqrt{1}=45-1=44\)
Bài 4:
\(M=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(=\frac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{9-2.3.2\sqrt{2}+8}}-\frac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{9+2.3.2\sqrt{2}+8}}\)
\(=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-\sqrt{8}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+\sqrt{8}\right)^2}}\)
\(=\frac{\left|\sqrt{2}-1\right|}{\left|3-\sqrt{8}\right|}-\frac{\left|\sqrt{2}+1\right|}{\left|3+\sqrt{8}\right|}=\frac{\sqrt{2}-1}{3-\sqrt{8}}-\frac{\sqrt{2}+1}{3+\sqrt{8}}\)
\(=\frac{\left(\sqrt{2}-1\right)\left(3+\sqrt{8}\right)}{\left(3-\sqrt{8}\right)\left(3+\sqrt{8}\right)}-\frac{\left(\sqrt{2}+1\right)\left(3-\sqrt{8}\right)}{\left(3+\sqrt{8}\right)\left(3-\sqrt{8}\right)}\)
\(=\left(3\sqrt{2}+\sqrt{16}-3-\sqrt{8}\right)-\left(3\sqrt{2}-\sqrt{16}+3-\sqrt{8}\right)\)
\(=3\sqrt{2}+4-3-\sqrt{8}-3\sqrt{2}+4-3+\sqrt{8}\)
\(=8-6=2\)là số tự nhiên