\(\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{953}+\sqrt{957}}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

\(=\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{957}+\sqrt{961}}\)

\(=\sqrt{5}-\sqrt{1}+\sqrt{9}-\sqrt{5}+...+\sqrt{961}-\sqrt{957}\)

\(=-\sqrt{1}+\sqrt{961}=\sqrt{961}-1=31-1=30\)

8 tháng 9 2017

\(\hept{\begin{cases}\\\\\end{cases}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt{ }\orbr{\begin{cases}\\\end{cases}}}\)

2 tháng 10 2018

\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)

\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)

          \(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

          \(=8+2\sqrt{6-2\sqrt{5}}\)

          \(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)

           \(=8+2\sqrt{5}-2=6+2\sqrt{5}\)

          \(=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

    \(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)

\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)

\(=10,94430659\)

\(\text{Lm hơi vắn tắt thông cảm nha!!}\)

27 tháng 5 2018

\(A=\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2014}+\sqrt{2018}}\)

\(\Rightarrow A=\sqrt{5}-\sqrt{1}+\sqrt{9}-\sqrt{5}+...+\sqrt{2018}-\sqrt{2014}\)

\(\Rightarrow A=-\sqrt{1}+\sqrt{2018}\)

cho mk nha

Ai trên 11 điểm cho mình nha câu dưới 3 mk lại

27 tháng 5 2018

Bạn ơi trục căn thức sao không còn mẫu vậy

8 tháng 9 2019

Nếu đề đúng:

Sử dụng liên hợp để trục căn thức ở mẫu:

\(\frac{1}{\sqrt{1}+\sqrt{5}}=\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\frac{\sqrt{5}-1}{5-1}=\frac{\sqrt{5}-1}{4}\) 

Tương tự như vậy ta sẽ có:

\(N=\frac{\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}+\frac{\sqrt{13}-\sqrt{9}}{\left(\sqrt{13}-\sqrt{9}\right)\left(\sqrt{13}+\sqrt{9}\right)}+\frac{\sqrt{17}-\sqrt{13}}{\left(\sqrt{17}-\sqrt{13}\right)\left(\sqrt{17}+\sqrt{13}\right)}\)

\(+\frac{\sqrt{21}-\sqrt{17}}{\left(\sqrt{21}-\sqrt{17}\right)\left(\sqrt{21}+\sqrt{17}\right)}+\frac{\sqrt{25}-\sqrt{23}}{\left(\sqrt{25}-\sqrt{23}\right)\left(\sqrt{25}+\sqrt{23}\right)}\)

\(=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+\frac{\sqrt{17}-\sqrt{13}}{4}+\frac{\sqrt{21}-\sqrt{17}}{4}+\frac{\sqrt{25}-\sqrt{23}}{4}\)

\(=\frac{\sqrt{5}-1+\sqrt{13}-\sqrt{9}+\sqrt{17}-\sqrt{13}+\sqrt{21}-\sqrt{17}+\sqrt{25}-\sqrt{23}}{4}\)

\(=\frac{\sqrt{5}-1-\sqrt{9}+\sqrt{21}+\sqrt{25}-\sqrt{23}}{4}=\frac{\sqrt{5}-1-3+\sqrt{21}+5-\sqrt{23}}{4}=\frac{1+\sqrt{5}+\sqrt{21}-\sqrt{23}}{4}\)

28 tháng 5 2018

\(Q=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

=> \(Q=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+\frac{\sqrt{9}-\sqrt{13}}{-4}+...+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)

=> \(Q=-\frac{1}{4}.\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}\right)\)

=> \(Q=-\frac{1}{4}.\left(1-\sqrt{2005}\right)\)

=> \(Q=\frac{\sqrt{2005}-1}{4}\)

6 tháng 6 2017

\(P=\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{\sqrt{5}-\sqrt{1}}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+...+\frac{\sqrt{2005}-\sqrt{2001}}{4}\)

\(=\frac{\sqrt{2005}-\sqrt{1}}{4}=\frac{\sqrt{2005}-1}{4}\)

7 tháng 6 2019

với n >0, ta có :

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Gọi biểu thức đã cho là A

\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)

\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)

\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)

\(A=-\sqrt{1}+\sqrt{9}=2\)

7 tháng 6 2019

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)