\(\frac{1}{\sqrt{1}+a}\)+ \(\sqrt{1-a}\)) : ( 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

sửa đề \(\left(\frac{1}{1+a}+1-a\right):\left(\frac{1}{1-a^2}+1\right)\)đk : xkhác -1 ; 1 

\(=\left(\frac{1+1-a^2}{1+a}\right):\left(\frac{1+1-a^2}{1-a^2}\right)=\frac{2-a^2}{1+a}:\frac{2-a^2}{1-a^2}=\frac{1-a^2}{a+1}=1-a\)

11 tháng 8 2020

A= \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{\sqrt{b}}{\sqrt{a}.\sqrt{a}-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-\sqrt{b}.\sqrt{b}}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{a}.\sqrt{a}.\sqrt{b}-\sqrt{b}.\sqrt{b}\sqrt{a}\right)\)

A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)

A = b-a

B = \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\)

B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}\left(a+\sqrt{a}\right)}{a^2-a}\right).\frac{a-1}{\sqrt{a}+1}\)

B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}.\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

\(B=\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}-\frac{a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B= \(\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)-a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B= \(\left(\frac{\left(\sqrt{a}+1\right)\left(a\sqrt{a}-a\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B = \(\frac{\left(\sqrt{a}+1\right)a\left(\sqrt{a}-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

\(B=\frac{a\left(\sqrt{a}^2-1^2\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

\(B=\frac{a\left(a-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

B = \(\frac{a-1}{\sqrt{a}+1}\)

7 tháng 9 2020

a) \(\frac{2\sqrt{5}+b\sqrt{a}}{\sqrt{ab}}-\frac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{2\sqrt{5ab}+ab\sqrt{b}}{ab}-\frac{\sqrt{a}+\sqrt{b}}{a-b}\)

\(=\frac{\left(2\sqrt{5ab}+ab\sqrt{b}\right)\left(a-b\right)-\left(\sqrt{a}+\sqrt{b}\right)ab}{ab\left(a-b\right)}\)

\(=\frac{2a\sqrt{5ab}-2b\sqrt{5ab}+a^2b\sqrt{b}-ab^2\sqrt{b}-ab\sqrt{a}-ab\sqrt{b}}{ab\left(a-b\right)}\)

7 tháng 9 2020

b) \(\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\cdot\left(\frac{1+1+\sqrt{a}}{1-a^2}\right)^2\)

\(=\left(1+\frac{\left(\sqrt{a}-1\right)\sqrt{a}}{\sqrt{a}-1}\right)\cdot\left(\frac{2+\sqrt{a}}{\left(1-a\right)\left(1+a\right)}\right)^2\)

\(=\left(1+\sqrt{a}\right)\left[\frac{2+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right]^2\)

\(=\frac{4+4\sqrt{a}+a}{\left(1-\sqrt{a}\right)^2\left(1+\sqrt{a}\right)\left(1+a\right)^2}\)  \(a\ge0;a\ne\pm1\)

Bổ sung đk của phần a: \(a,b>0;a\ne b\)

13 tháng 8 2017

A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\) 

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

6 tháng 7 2019
https://i.imgur.com/yjikkJN.jpg
2 tháng 8 2018

Bài làm ai trên 11 điểm tích mình thì mình tích lại

                     Ông tùng hơn tùng số tuổi là :

                            29 + 32 = 61 (tuổi )

            Vậy ông của tùng hơn tùng 61 tuổi 

2 tháng 8 2018

ủa bạn giải bài này ko liên quan nha