![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)\(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}=3\)
=>\(\frac{x-b-c}{a}-1+\frac{x-c-a}{b}-1+\frac{x-a-b}{c}-1=0\)
=>\(\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)
=>\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
Nếu x - a -b -c = 0 => phương trình có nghiệm duy nhất x = a + b + c
Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)=> Phương trình có vô số nghiệm x thuộc R
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{x-1}{x+2}+1=\frac{1}{x-2}\)
ĐKXĐ: x + 2 \(\ne\) 0 và x - 2 \(\ne\) 0
\(\Rightarrow\) x \(\ne\) \(\pm\) 2
b, \(\frac{x-1}{1-2x}=1\)
ĐKXĐ: 1 - 2x \(\ne\) 0
\(\Leftrightarrow\) x \(\ne\) \(\frac{1}{2}\)
Bài 2:
a, \(\frac{x+2}{x}=\frac{2x+3}{x-2}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 2)
\(\Leftrightarrow\) \(\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x\left(2x+3\right)}{x\left(x-2\right)}\)
\(\Rightarrow\) (x + 2)(x - 2) = x(2x + 3)
\(\Leftrightarrow\) x2 - 4 = 2x2 + 3x
\(\Leftrightarrow\) x2 - 2x2 - 3x = 4
\(\Leftrightarrow\) -x2 - 3x = 4
\(\Leftrightarrow\) -x2 - 3x - 4 = 0
\(\Leftrightarrow\) -(x2 + 3x + 4) = 0
\(\Leftrightarrow\) x2 + 3x + 4 = 0
\(\Leftrightarrow\) x2 + 3x + \(\frac{9}{4}\) + \(\frac{7}{4}\) = 0
\(\Leftrightarrow\) (x + \(\frac{3}{2}\))2 + \(\frac{7}{4}\) = 0
Vì (x + \(\frac{3}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
b, \(\frac{2x+5}{2x}-\frac{x}{x+5}=0\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) -5)
\(\Leftrightarrow\) \(\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{2x^2}{2x\left(x+5\right)}=0\)
\(\Rightarrow\) (2x + 5)(x + 5) - 2x2 = 0
\(\Leftrightarrow\) 2x2 + 10x + 5x + 25 - 2x2 = 0
\(\Leftrightarrow\) 15x + 25 = 0
\(\Leftrightarrow\) x = \(\frac{-5}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{-5}{3}\)}
c, \(\frac{x+1}{3-x}=2\)
\(\Leftrightarrow\) \(\frac{x+1}{3-x}=\frac{2\left(3-x\right)}{3-x}\) (ĐKXĐ: x \(\ne\) 3)
\(\Rightarrow\) x + 1 = 2(3 - x)
\(\Leftrightarrow\) x + 1 - 2(3 - x) = 0
\(\Leftrightarrow\) x + 1 - 6 + 2x = 0
\(\Leftrightarrow\) 3x - 5 = 0
\(\Leftrightarrow\) x = \(\frac{5}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{5}{3}\)}
d, \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\) (x + 1)2 - (x - 1)2 = 16
\(\Leftrightarrow\) (x + 1 - x + 1)(x + 1 + x - 1) = 16
\(\Leftrightarrow\) 4x = 16
\(\Leftrightarrow\) x = 4 (TMĐKXĐ)
Vậy S = {4}
Chúc bn học tốt!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(c,\frac{x-a-b}{c}-1+\frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1=0.\)
\(\frac{x-a-b-c}{c}+\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}=0\)
\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
=>\(\orbr{\begin{cases}a+b+c=x\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}\)
Vậy.......
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
Mà \(2018=a+b+c\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)
TH1 : \(a+b=0\Leftrightarrow a=-b\)
\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)
Mà \(a+b+c=2018\)
\(\Leftrightarrow-b+b+c=2018\)
\(\Leftrightarrow c=2018\)
Khi đó \(M=\frac{1}{2018^{2017}}\)
Các trường hợp còn lại tương tự
Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)
Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo bài 2 ở link này nhé!