
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-....-\frac{1}{6.4}-\frac{1}{4.2}\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100.98}+\frac{1}{98.96}+....+\frac{1}{6.4}+\frac{1}{4.2}\right)\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{98}+\frac{1}{98}-\frac{1}{96}+.....+\frac{1}{6}-\frac{1}{4}+\frac{1}{4}-\frac{1}{2}\right)\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)\Rightarrow A=\frac{1}{100}-\frac{1}{100}+\frac{1}{2}\Rightarrow A=\frac{1}{2}\)
\(A=\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-...-\frac{1}{6.4}-\frac{1}{4.2}\)
\(A=\frac{1}{100}-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{96.98}+\frac{1}{98.100}\right)\)
\(A=\frac{1}{100}-\frac{1}{2.2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\left(1-\frac{1}{50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\frac{49}{50}\)
\(A=\frac{2}{200}-\frac{49}{200}=-\frac{47}{200}\)

b) \(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\frac{2-\left(1+3+5+7+..+49\right)}{12}\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\frac{2-\left(12.50+25\right)}{89}=-\frac{5.9.7.89}{5.4.7.7.89}=\frac{-9}{28}\)

\(a;3^2\cdot\frac{1}{243}\cdot81^2\cdot\frac{1}{3^3}\)
\(=3^2\cdot\frac{1}{3^5}\cdot3^4\cdot\frac{1}{3^3}\)
\(=\left(3^2\cdot3^4\right)\cdot\left(\frac{1}{3^5}\cdot\frac{1}{3^3}\right)\)
\(=3^6\cdot\frac{1}{3^8}\)
\(=\frac{3^6}{3^8}\)
\(=\frac{1}{3^2}=\frac{1}{9}\)
\(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)
= \(9.\frac{1}{243}.6561.\frac{1}{27}\)
= \(9\)
b ) \(\left(4,2\right)^5:\left(2^3.\frac{1}{16}\right)\)
= \(\left(\frac{21}{5}\right)^5:\left(8.\frac{1}{16}\right)\)
= \(130691232:\frac{1}{2}\)
= \(130691232\times2\)
= 261382464
Chúc bạn học tốt !!!
=

Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥

a) \(9\cdot3^3\cdot\frac{1}{81}\cdot3^2\)
\(=\frac{3^2\cdot3^3\cdot3^2}{3^4}\)
\(=3^3=27\)
b) \(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)\)
\(=\frac{2^2\cdot2^2\cdot2^4}{2^3}\)
\(=2^5=32\)
c) \(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2\)
\(=\frac{3^2\cdot2^5\cdot2^4}{3^2}\)
\(=2^9=512\)
d) \(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2\)
\(=\frac{1^2\cdot1\cdot3^4}{3^2}\)
\(=3^2=9\)
Đặt \(A=\frac{1}{50.48}-\frac{1}{48.46}-...-\frac{1}{4.2}\) ta có :
\(A=\frac{1}{48.50}-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{46.48}\right)\) ( xắp sếp lại cho đẹp đội hình thôi :)
Đặt \(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{46.48}\) ta có :
\(2B=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{46.48}\)
\(2B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{46}-\frac{1}{48}\)
\(2B=\frac{1}{2}-\frac{1}{48}\)
\(2B=\frac{23}{48}\)
\(B=\frac{23}{48}:2\)
\(B=\frac{23}{48}.\frac{1}{2}\)
\(B=\frac{23}{96}\)
\(\Rightarrow\)\(A=\frac{1}{48.50}-B=\frac{1}{48.50}-\frac{23}{96}=\frac{1}{2400}-\frac{23}{96}=\frac{-287}{1200}\)
Vậy \(A=\frac{-287}{1200}\)
Chúc bạn học tốt ~