Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5.8}\)\(+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{98}{1545}\)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=3.\frac{98}{1545}\)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{103}\)
\(\Leftrightarrow x+3=103\)
\(\Leftrightarrow x\)\(=103-3\)
\(\Leftrightarrow x\)\(=100\)
Vậy x = 100
~~~~~~~Hok tốt~~~~~~~~
ta có \(\frac{1}{5.8}+\frac{1}{8.11}+...\frac{1}{x.\left(x+3\right)}\)\(=\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}\right)\)\(=\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{98}{1545}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{1545}:\frac{1}{3}=\frac{98}{515}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}=\frac{1}{103}\)
\(\Rightarrow x+3=103\)
\(\Rightarrow x=100\)
nhớ k nha
a) (1,5 . 1,9 - x - 0,5) : 0,25 = 7,5 : 0,125
=> (2,85 - x - 0,5) : 0,25 = 60
=> (2,85 - 0,5) - x = 60 . 0,25
=> 2,35 - x = 15
=> x = 2,35 - 15
=> x = -12,65
Vậy x = -12,65
b) \(1-\left(5\frac{2}{9}+x-7\frac{7}{18}\right)\div2\frac{1}{6}=0\)
\(\Rightarrow\left(5\frac{2}{9}-7\frac{7}{18}+x\right)\div2\frac{1}{6}=1-0\)
\(\Rightarrow\left(\frac{47}{9}-\frac{133}{18}+x\right)\div2\frac{1}{6}=1\)
\(\Rightarrow\frac{-13}{6}+x=2\frac{1}{6}\)
\(\Rightarrow x=2\frac{1}{6}-\frac{-13}{6}\)
\(\Rightarrow x=\frac{13}{6}+\frac{13}{6}\)
\(\Rightarrow x=\frac{26}{6}\)
\(\Rightarrow x=\frac{13}{3}\)
Vậy \(x=\frac{13}{3}\)
c) \(35\left(2\frac{1}{5}-x\right)=32\)
\(\Rightarrow2\frac{1}{5}-x=32\div35\)
\(\Rightarrow\frac{11}{5}-x=\frac{32}{35}\)
\(\Rightarrow x=\frac{11}{5}-\frac{32}{35}\)
\(\Rightarrow x=\frac{9}{7}\)
Vậy \(x=\frac{9}{7}\)
d) \(\frac{4}{3}+\left(x\div2\frac{2}{3}-0,5\right).1\frac{35}{55}=0,6\)
\(\Rightarrow\left(x\div\frac{8}{3}-\frac{1}{2}\right).\frac{18}{11}=\frac{3}{5}-\frac{4}{3}\)
\(\Rightarrow\left(x\div\frac{8}{3}-\frac{1}{2}\right).\frac{18}{11}=\frac{-11}{15}\)
\(\Rightarrow x\div\frac{8}{3}-\frac{1}{2}=\frac{-11}{15}\div\frac{18}{11}\)
\(\Rightarrow x\div\frac{8}{3}-\frac{1}{2}=\frac{-121}{270}\)
\(\Rightarrow x\div\frac{8}{3}=\frac{-121}{270}+\frac{1}{2}\)
\(\Rightarrow x\div\frac{8}{3}=\frac{7}{135}\)
\(\Rightarrow x=\frac{7}{135}.\frac{8}{3}\)
\(\Rightarrow x=\frac{56}{405}\)
Vậy \(x=\frac{56}{405}\)
e) \(1\frac{1}{3}.2\frac{2}{4}\div\frac{5}{6}.1\frac{1}{11}=11-5\div x\)
\(\Rightarrow\frac{4}{3}.\frac{5}{2}\div\frac{5}{6}.\frac{12}{11}=11-5\div x\)
\(\Rightarrow\frac{10}{3}\div\frac{5}{6}.\frac{12}{11}=11-5\div x\)
\(\Rightarrow4.\frac{12}{11}=11-5\div x\)
\(\Rightarrow11-5\div x=\frac{48}{11}\)
\(\Rightarrow5\div x=11-\frac{48}{11}\)
\(\Rightarrow5\div x=\frac{73}{11}\)
\(\Rightarrow x=5\div\frac{73}{11}\)
\(\Rightarrow x=\frac{55}{73}\)
Vậy \(x=\frac{55}{73}\)
a) (1,5 * 1,9 - x - 0,5) : 0,25 = 7,5 : 0,125
(2,85 - x - 0,5) : 0,25 = 60
(2,85 - x - 0,5) = 60 x 0,25
(2,85 - x - 0,5) = 15
2,35 - x = 15
x = 2,35 - 15
x = -12,65
Ta có: \(M=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{6}-\frac{1}{11}=\frac{5}{66}\)
\(\Rightarrow M=\frac{5}{66}:\frac{1}{2}=\frac{5}{33}.\)
\(M=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
\(M=\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}\)
\(M=\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+\frac{2}{8\cdot9}+\frac{2}{9\cdot10}+\frac{2}{10\cdot11}\)
\(M=2\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\right)\)
\(M=2\left(\frac{1}{6}-\frac{1}{11}\right)\)
\(M=2\cdot\frac{5}{66}\)
\(M=\frac{5}{33}\)
\(3\frac{4}{7}4\frac{2}{5}2\frac{1}{2}\)
\(=\frac{275}{7}\)
\(3\frac{1}{5}+\frac{3}{4}-\frac{1}{2}:\frac{2}{7}=\frac{16}{5}+\frac{3}{4}-\frac{7}{4}=\frac{11}{5}\)
\(3\frac{4}{7}4\frac{2}{5}2\frac{1}{2}=\frac{275}{7}\)
\(3\frac{1}{5}+\frac{3}{4}+\frac{1}{2}:\frac{2}{7}\)
\(=3\frac{1}{5}+\frac{3}{4}+\frac{7}{4}\)
\(=\frac{11}{5}\)
b
Q=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}\)
Rồi giải tương tự như câu a là được
M=\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{y\times\left(y+1\right)}=\frac{996}{997}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{y}-\frac{1}{y+1}=\frac{996}{997}\)
\(\Leftrightarrow1-\frac{1}{y+1}=\frac{996}{997}\)
\(\Leftrightarrow\frac{1}{y+1}=1-\frac{996}{997}=\frac{1}{997}\)
\(\Leftrightarrow y+1=997\Leftrightarrow y=996\)
Vậy y = 996
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2012\)
Vậy x = 2012
CÁCH LÀM NHƯ SAU :
(7/28 + 1/28) + 1/70 + 1/130 + 1/x.(x+3)
8/28 + 1/70 +1/130 +1/x.(x+3)
2/7+1/70+1/130+1/x.(x+3)
(20/70 +1/70)+1/130+1/x.(x+3)
3/10+1/130+1/x.(x+3)
39/130+1/130+1/x.(x+3)
4/13+1/x.(x+3)
Đến đây bn tự làm hộ mình vớ. chúc hok tốt k cho mình nhé
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{x\left(x+3\right)}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{x\left(x+3\right)}\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(=\frac{1}{3}\left(\frac{12}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(=\frac{1}{3}.\frac{12}{13}+\frac{1}{3}.\frac{1}{x}-\frac{1}{3}.\frac{1}{x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}-\frac{1}{3x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}-\frac{1}{3x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3}.\frac{1}{x+3}\)
\(=\frac{4}{13}=\frac{1}{3}.\frac{1}{x+3}-\frac{1}{3x}\)
\(=\frac{4}{13}=\frac{1}{3}.\frac{1}{x+3}-\frac{1}{3}.\frac{1}{x}\)
\(=\frac{4}{13}=\frac{1}{3}\left(\frac{1}{x+3}-\frac{1}{x}\right)\)
\(=\frac{4}{13}:\frac{1}{3}=\frac{1}{x+1}-\frac{1}{x}\)
\(=\frac{12}{13}=\frac{1}{x+1}-\frac{1}{x}\)
\(=\frac{12}{13}=\frac{x-\left(x+1\right)}{\left(x+1\right)x}\)
\(=\frac{12}{13}=-\frac{1}{x^2+x}\)
\(\Leftrightarrow=12\left(x^2+x\right)=13.\left(-1\right)\)
\(=12\left(x^2+x\right)=-13\)
\(=x^2+x=-\frac{13}{12}\)
\(=x\left(x+1\right)=-\frac{13}{12}\)
.... Chiụ