Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a/3 - 1/2 = 1/b+5
=> 2a-3/6 = 1/b+5
=> (2a-3)(b+5)= 6
Sau đó bn xét bảng là ra
\(B=\frac{3^{122}}{3^{124}+1}=\frac{3^{123}}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+1}=A\)
Do đó \(A>B\).
Bài 1:
a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)
\(=\frac{-15}{240}-\frac{16}{240}\)
\(=\frac{-31}{240}\)
b, \(=\frac{-10}{12}-\frac{-12}{12}\)
\(=\frac{2}{12}=\frac{1}{6}\)
c, \(=\frac{-30}{6}-\frac{1}{6}\)
\(=\frac{-31}{6}\)
Bài 2:
a, \(x=-\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{1}{4}\)
b, \(\frac{1}{2}+x=-\frac{11}{2}\)
\(x=-\frac{11}{2}-\frac{1}{2}\)
\(x=-6\)
Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^
\(A=\frac{5}{n-1}+\frac{n-3}{n-1}=\frac{5+n-3}{n-1}=\frac{n-2}{n-1}\)
a) Để A là phân số thì \(n-1\ne0\)
=> \(n\ne1\)
b) ĐK: n khác 1
Để A là 1 số nguyên thì \(n-2⋮n-1\)
\(\Leftrightarrow1⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(1\right)\)
...
a) Để A là phân số thì n-1 \(\ne\)0 => n \(\ne\)1
b) \(\frac{5}{n-1}\)+ \(\frac{n-3}{n-1}\)= \(\frac{5+n-3}{n-1}\)= \(\frac{n+2}{n-1}\)= \(\frac{n-1+3}{n-1}\)= \(\frac{3}{n-1}\)
Để A là số nguyên thì 3 \(⋮\)n-1
=> n-1 \(\in\)Ư(3) = { 1; 3; -1; -3}
=> n \(\in\){ 2; 4; 0; -2}
Vậy...
b) \(\frac{4}{9}x-\frac{1}{2}=\frac{-5}{9}\)
\(\Rightarrow\frac{4}{9}x=\frac{-5}{9}+\frac{1}{2}\)
\(\Rightarrow\frac{4}{9}x=\frac{-1}{18}\)
\(\Rightarrow x=\frac{-1}{18}:\frac{4}{9}\)
\(\Rightarrow x=\frac{-1}{8}\)
\(=\frac{5}{3}\)
hk tốt
đừng nên đổi quá nhiều nhé
1/3 + 4/3 = 5/3
Chúc bạn học tốt !!!
pp