Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Leftrightarrow x=308-3\)
\(\Leftrightarrow x=305\)
Vậy \(x=305\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{2017}{2019}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{2017}{4038}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{2017}{4038}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2019}\)
\(\Leftrightarrow x+1=2019\)
\(\Leftrightarrow x=2019-1\)
\(\Leftrightarrow x=2018\)
Vậy x = 2018
chị ơi bài này em học từ lớp 6 rồi( ngay đầu vào luôn ) nhung dốt nát lè
\(1.\left(x+3\right)^3=\frac{1}{-27}\)
\(\left(x+3\right)^3=\left(\frac{1}{-3}\right)^3\)
\(\Rightarrow x+3=\frac{1}{-3}\)
\(\Rightarrow x=\frac{-1}{3}-3\)
\(x=\frac{-10}{3}\)
a) \(x=\frac{9}{10}\)
b) \(x=\frac{-4}{3}\)
c) \(x=\frac{1}{42}\)
d) \(x=\frac{-47}{10}\)
ko có thời gian nên mình chỉ cho đáp án thôi nhé
thông cảm cho mình ngen
đúng thì k đấy
chúc bạn học giỏi
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{1}{x\left(x+1\right):2}=\frac{2018}{2019}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{x\left(x+1\right)}\right)\)\(=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2018}{2019}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2018}{4038}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2018}{4038}=\frac{1}{4038}\)
\(\Rightarrow x+1=4038\)
\(\Rightarrow x=4037\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x-1\right)}=\)\(\frac{2017}{2019}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x-1\right)}=\frac{2017}{2019}\)
\(2\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right]=\frac{2017}{2019}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\)\(\frac{2017}{2019}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{2019}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4038}\)
\(\frac{1}{x+1}=\frac{1}{2019}\)
x + 1 =2019
x = 2019-1 =2018
Vậy x = 2018
\(2\left(\frac{1}{3}.\frac{1}{2}+\frac{1}{6}.\frac{1}{2}+\frac{1}{10}.\frac{1}{2}+....+\frac{2}{x\left(x+1\right)}.\frac{1}{2}\right)=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)\)\(=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
=> \(2[\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+....+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}]=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{2}+0+0+....+0-\frac{1}{x-1}\right)=\frac{2017}{2019}\)
=>\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
=>\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{4038}\)
=>\(\frac{1}{x+1}=\frac{1}{2019}\)
=> x+1=2019
=>x=2018
1,\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\frac{41}{6}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{41}{14}+\frac{1}{3}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{137}{42}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{137}{42}-\frac{1}{2}\)
\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{58}{21}\)
\(\left(x-\frac{9}{4}\right)=\frac{5}{2}:\frac{2}{9}\)
\(\left(x-\frac{9}{4}\right)=\frac{45}{4}\)
\(x=\frac{45}{4}+\frac{9}{4}\)
\(x=\frac{27}{2}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left[x+1\right]}=\frac{2017}{2019}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left[x+1\right]}=\frac{2017}{2019}\)
\(\Rightarrow2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left[x+1\right]}\right]=\frac{2017}{2019}\)
\(\Rightarrow2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{2017}{2019}\)
\(\Rightarrow2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{2017}{2019}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{\frac{2017}{2019}}{2}=\frac{2017}{4038}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4038}=\frac{1}{2019}\)
=> x + 1 = 2019 <=> x = 2018