Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}=\frac{\left(1.3.5...2n-1\right).\left(2.4.6...2n\right)}{\left(2.4.6...2n\right)\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\)
\(=\frac{1.2.3.4.5.6...\left(2n-1\right).2n}{1.2.3...n\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n.2^n}\)
\(=\frac{1}{2^n}\)
a: \(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n\cdot\dfrac{-7}{5}}=1:\dfrac{-7}{5}=-\dfrac{5}{7}\)
b: \(=\dfrac{\dfrac{1}{4}^n}{\left(-\dfrac{1}{2}\right)^n}=\left(-\dfrac{1}{2}\right)^n\)