Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-0,6\right|< \frac{1}{3}\)
\(\Leftrightarrow x-0,6< 0,3.........\)
\(\Leftrightarrow\left(x-0,6\right)\in\left\{0;0,1;0,2;0,3\right\}\)
\(\Leftrightarrow x\in\left\{0,6;0,7;0,8;0,9\right\}\)
Vậy ......................
~ Hok tốt ~
\(/x-0,6/< \frac{1}{3}\)
\(/x-\frac{6}{10}/< \frac{1}{3}\)
\(/x-\frac{3}{5}/< \frac{1}{3}\)
TH1
\(x-\frac{3}{5}< \frac{1}{3}\)
\(x< \frac{1}{3}+\frac{3}{5}\)
\(x< \frac{14}{15}\)
TH2
\(x-0,6< -\frac{1}{3}\)
\(x< -\frac{1}{3}+\frac{6}{10}\)
\(x< -\frac{1}{3}+\frac{3}{5}\)
\(x< \frac{4}{15}\)
Ta có:
(-3/2:3/-4)*(-9/2)-1/4<x/8<-1/2:3/4:1/8+1
Xét VT = (-3/2.-4/3).(-9/2)-1/4
= 2.-9/2-1/4
=-9-1/4=-37/4=--222/24
Xét VP = -1/2:3/4:1/8+1
=-1/2.4/3.8+1
=-16/3+1
=-13/3=-104/24
=>-222/24<x/8<-104/24=>-222/24<x.3/24<-104/24=>-222<x.3<-104
=>x.3={-221;-220;...;--105}Mà x.3 chia hết cho 3=>x.3 thuộc{-219;-216;...;-105}
=>x={-73;-72;.....-35}
Vậy ..........
<=>\(\frac{8}{3}< x+\frac{1}{5}< \frac{499}{56}\)
<=>\(\begin{cases}\frac{8}{3}< x+\frac{1}{5}\\x+\frac{1}{5}< \frac{499}{56}\end{cases}\)
<=> \(\begin{cases}x>\frac{37}{15}\\x< \frac{2439}{280}\end{cases}\)
=> x\(\in\left(\frac{37}{15};\frac{2439}{280}\right)\)
Theo đầu bài ta có:
\(\frac{3}{5\cdot2!}+\frac{3}{5\cdot3!}+\frac{3}{5\cdot4!}+...+\frac{3}{5.100!}< 0,6\)
\(\Rightarrow\frac{3}{5}\cdot\frac{1}{2!}+\frac{3}{5}\cdot\frac{1}{3!}+\frac{3}{5}\cdot\frac{1}{4!}+...+\frac{3}{5}\cdot\frac{1}{100!}< \frac{3}{5}\)
\(\Rightarrow\frac{3}{5}\cdot\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)< \frac{3}{5}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1\)( điều cần chứng minh )
Mà \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1-\frac{1}{100}< 1\)( đã chứng minh được )
Vậy \(\frac{3}{5\cdot2!}+\frac{3}{5\cdot3!}+\frac{3}{5\cdot4!}+...+\frac{3}{5\cdot100!}< 0,6\)( đpcm )
(??…………………