Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 1/3+1/3^2+1/3^3+1/3^4+1/3^5 (goi tong bang M)
3M=1+1/3+1/3^2+1/3^3+1/3^4
3M-M=1-1/3^5
2M=242/243
M=242/243*1/2=121/243
A=1+1/3+1/9+...+1/729
3A=3+1+1/3+....+1/243
3A-A=(3+1+1/3+...+1/243)-(1+1/3+1/9+...+1/729)
2A=3-1/729
A=(3-1/729)/2
k cho mình nha
\(\frac{1}{2}+\frac{1}{2}=\frac{1+1}{2}=\frac{2}{2}=1\)
\(\frac{3}{4}+\frac{1}{4}=\frac{3+1}{4}=\frac{4}{4}=1\)
\(\frac{3}{9}+\frac{6}{9}=\frac{3+6}{9}=\frac{9}{9}=1\)
Tính nhanh:
\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\)\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)
\(=\left(\frac{1}{1}+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{8}\right)\)\(+\left(\frac{1}{3}+\frac{1}{7}\right)+\left(\frac{1}{4}+\frac{1}{6}\right)+\frac{1}{5}\)
\(=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{5}\)
\(=\frac{4}{10}+\frac{2}{5}=\frac{2}{5}+\frac{1}{5}=\frac{3}{5}\)
tks giúp mk nha! cảm ơn nhiều ạ...
Đặt \(A=2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=2-\frac{1}{9}=\frac{18}{9}-\frac{1}{9}=\frac{17}{9}\)
\(\frac{1}{2}:\frac{3}{2}:\frac{5}{4}:\frac{6}{5}:\frac{7}{6}:\frac{8}{7}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\frac{7}{8}\)
\(=\frac{1\cdot\left(2\cdot5\cdot6\cdot7\right)}{8\cdot3\cdot\left(2\cdot5\cdot6\cdot7\right)}\)
\(=\frac{1}{24}\)
\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\frac{7}{8}\cdot\frac{8}{9}\cdot\frac{9}{10}\)
\(=\frac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\right)}{\left(2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\right)\cdot10}\)
\(=\frac{1}{10}\)
Ta có:
\(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{10}{30}-\frac{1}{30}-\frac{6}{30}-\frac{3}{30}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{10-1-6-3}{30}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(0\)
= \(0\)
Ta có:
\(\left(1-\frac{1}{11}\right)\times\left(1-\frac{1}{10}\right)\times\left(1-\frac{1}{9}\right)\times\left(1-\frac{1}{8}\right)\times\left(1-\frac{1}{7}\right)\times\left(1-\frac{1}{6}\right)\)
\(=\frac{10}{11}\times\frac{9}{10}\times\frac{8}{9}\times\frac{7}{8}\times\frac{6}{7}\times\frac{5}{6}\)
\(=\frac{10\times9\times8\times7\times6\times5}{11\times10\times9\times8\times7\times6}\)
\(=\frac{5}{11}\)
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+......+\frac{1}{2187}\)
\(3A=3\times\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right).\)
\(3A=1+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)\)
\(3A=1+A-\frac{1}{2187}\)
\(2A=1-\frac{1}{2187}\)
\(2A=\frac{2186}{2187}\)
\(A=\frac{2186}{2187}\div2\)
\(A=\frac{1093}{2187}\)
cc cc ccccccccccccccccccccccccccccc