Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(\frac{a}{3}+4y\right)^2=\frac{a^2}{9}+\frac{8ay}{3}+16y^2\)
\(2,\)Bạn xem lại đề bài giùm mk nhé
\(\left(x^2+\frac{2}{5}y\right).\left(x^2-\frac{2}{5}y\right)=\left(x^2\right)^2-\left(\frac{2}{5}y\right)^2=x^4-\frac{4}{25}y^2\)
Vì1/2(x-y)2 luôn lớn hơn hoặc bằng 0 với mọi x , y
suy ra 1/2 (x - y )2 luôn lớn hơn bằng 0 với mọi x , y
suy ra 1/2 (x-y)2 + 2 luôn lớn hơn bằng 0+2=2 với mọi x , y
vậy giá trị nhỏ nhất của biểu thức trên là 2
a)theo C-S: \(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Khi \(x=y\)
b)theo C-S: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
khi x=y=z
c)theo C-S: \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
khi \(\frac{a}{x}=\frac{b}{y}\)