\(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+............+\frac{1}{2024}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

2 tháng 5 2017

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)

1 tháng 5 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 2\left(đpcm\right)\)

8 tháng 5 2019

Cộng các tổng ở các mẫu số được:    \(S=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}.\) 

       \(\Leftrightarrow S=1+\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{6}+\frac{1}{10}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{21}+\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{36}.\) 

        Thực hiện các phép nhân một số với một hiệu ,được:

            \(S=1+\frac{1}{2}-\frac{1}{6}+\frac{1}{6}+\frac{1}{10}+\frac{1}{6}-\frac{1}{15}+\frac{1}{21}+\frac{1}{12}-\frac{1}{21}+\frac{1}{36}.\) 

         Giản ước, làm gọn được :   \(S=(1+\frac{1}{2})+(\frac{1}{10}+\frac{1}{6}-\frac{1}{15})+(\frac{1}{12}+\frac{1}{36}).\) 

            \(\Leftrightarrow S=\frac{3}{2}+\frac{1}{5}+\frac{1}{9}=\frac{135+18+10}{90}=\frac{163}{90}.\)

5 tháng 7 2016

đúng rồi đó

5 tháng 7 2016

rồi,kp nha

14 tháng 4 2019

c)  \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\) 

\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\) 

\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)

\(=2\left(1-\frac{1}{16}\right)\) 

\(=2.\frac{15}{16}\) 

\(=\frac{15}{8}\) 

Vậy A=\(\frac{15}{8}\)

14 tháng 4 2019

a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)

\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=3\left(1-\frac{1}{100}\right)\)

\(=3.\frac{99}{100}=\frac{297}{100}\)

24 tháng 3 2019

a) \(\frac{14}{21}+1-\left|\frac{1}{3}-1\right|\)

\(=\frac{2}{3}+1-\frac{2}{3}\)

\(=1+\left(\frac{2}{3}-\frac{1}{3}\right)\)

\(=1\)

b) \(\frac{1}{3}-\left|\frac{-1}{4}+\frac{5}{6}\right|-\left|\frac{-7}{12}\right|\)

\(=\frac{1}{3}-\frac{7}{12}-\frac{7}{12}\)

\(=-\frac{5}{6}\)

24 tháng 3 2019

Các câu khác làm tương tự thôi :))