Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-3}{3}-1=\frac{x}{-4}\)
\(\Leftrightarrow\frac{x-3}{3}-\frac{3}{3}=\frac{x}{-4}\)
\(\Leftrightarrow\frac{x-6}{3}=\frac{x}{-4}\)
\(\Leftrightarrow-4\left(x-6\right)=3x\)
\(\Leftrightarrow-4x+24=3x\)
\(\Leftrightarrow24=3x+4x\)
\(\Leftrightarrow7x=24\)
\(\Leftrightarrow x=\frac{24}{7}\)
b) \(\frac{5}{8}-\left(x-\frac{1}{2}\right)=\frac{-3}{4}\)
\(\Leftrightarrow\frac{5}{8}-x+\frac{1}{2}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{5}{8}+\frac{4}{8}-x=\frac{-3}{4}\)
\(\Leftrightarrow\frac{9}{8}-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{9}{8}+\frac{3}{4}\)
\(\Leftrightarrow x=\frac{15}{8}\)
bài 1 :
\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1
\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1
\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2
chúc bạn học tốt !!!
a) \(2x-\frac{2}{3}-7x=\frac{3}{2}-1\\ 2x-7x-\frac{2}{3}=\frac{1}{2}\\ -5x=\frac{1}{2}+\frac{2}{3}\\ -5x=\frac{7}{6}\\ x=\frac{7}{6}:\left(-5\right)\\ x=\frac{-7}{30}\)Vậy \(x=\frac{-7}{30}\)
b) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\\ \frac{3}{2}x-\frac{1}{3}x=\frac{2}{5}-\frac{1}{4}\\ \frac{7}{6}x=\frac{3}{20}\\ x=\frac{3}{20}:\frac{7}{6}\\ x=\frac{9}{70}\)Vậy \(x=\frac{9}{70}\)
c) \(\frac{2}{3}-\frac{5}{3}x=\frac{7}{10}x+\frac{5}{6}\\ \frac{2}{3}-\frac{5}{6}=\frac{7}{10}x+\frac{5}{3}x\\ \frac{-1}{6}=\frac{71}{30}x\\ x=\frac{-1}{6}:\frac{71}{30}\\ x=\frac{-5}{71}\)Vậy \(x=\frac{-5}{71}\)
d) \(2x-\frac{1}{4}=\frac{5}{6}-\frac{1}{2}x\\ 2x+\frac{1}{2}x=\frac{5}{6}+\frac{1}{4}\\ \frac{5}{2}x=\frac{13}{12}\\ x=\frac{13}{12}:\frac{5}{2}\\ x=\frac{13}{30}\)Vậy \(x=\frac{13}{30}\)
e) \(3x-\frac{5}{3}=x-\frac{1}{4}\\ 3x-x=\frac{5}{3}-\frac{1}{4}\\ 2x=\frac{17}{12}\\ x=\frac{17}{12}:2\\ x=\frac{17}{24}\)Vậy \(x=\frac{17}{24}\)
Èo, chăm thế? Chăm hơn cả mik cơ, gần 11 h rồi onl thì thấy bài được bạn HISI làm hết rồi :((
\(\left(6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\right):\frac{3}{12}\)
\(=\left(6+\frac{1}{8}+\frac{1}{2}\right):\frac{1}{4}\)
=\(\frac{53}{8}:\frac{1}{4}\)
\(=\frac{53}{2}\)
a)30/60,-40/60,45/60,48/60
45/60>30/60>-40/60>-48/60
=3/4>1/2>-2/3>-4/5
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\frac{5}{19}+\frac{8}{43}\)
\(=\left(3\frac{14}{19}+6\frac{5}{19}\right)+\left(\frac{35}{43}+\frac{8}{43}\right)+\frac{13}{17}\)
\(=10+1+\frac{13}{17}=11+\frac{13}{17}=11\frac{13}{17}\)
\(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}+1\frac{5}{7}\)
\(=\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}+1+\frac{-5}{7}.\left(-1\right)\)
\(=\frac{-5}{7}\left(\frac{2}{11}+\frac{9}{11}-1\right)+1\)
\(=\frac{-5}{7}.0+1==0+1=1\)
Câu 1 :
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)
\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên :
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)
Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có :
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow\)\(A=99-B>99-1=98\)
\(\Rightarrow\)\(A>98\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(98< A< 99\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
mk 0 bt nhưng ai chat nhìu kt bn với mk nha
MSC : 120
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(=\frac{60}{120}+\frac{40}{120}+\frac{30}{120}+\frac{24}{120}+\frac{20}{120}\)
\(=\frac{174}{120}\)
\(=1\frac{54}{120}=1\frac{9}{20}=1,45\)