Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c=\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{\frac{2}{1}-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> a = 60 ; b = 45 ; c = 40
Bài 1: Làm:
a,
- x - 2/3 = - 6/7
<=> - x = - 6/7 + 2/3 = -18/21 + 14/21
<=> - x = - 4/21
<=> x = 4/21.
Vậy x = 4/21.
b,
x/- 27 = - 3 / x
<=> x^2 = - 27 . (- 3)
<=> x^2 = 81
<=> x thuộc {9;- 9}
Vậy x thuộc {9;- 9}.
c,
x / y = 2 / 5
<=> x / 2 = y / 5 = 2x - y / 2.2 - 5 = 3 / -1 = - 3.
(T/c dãy tỷ số bằng nhau)
=> x / 2 = - 3 <=> x = - 6.
y / 5 = - 3 <=> y = - 15.
Vậy x = - 6 ; y = - 15.
Bài 2: Làm:
1/2 a = 2/3 b = 3/4 c
<=> a/2 = 2b/3 = 3c/4
<=> a/2.6 = 2b/3.6 = 3c/4.6 (mỗi vế nhân với 1/6)
<=> a/12 = 2b/18 = 3c/24
<=> a/12 = b/9 = c/8 (Rút gọn)
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
a/12 = b/9 = c/8 = a - b/ 12 - 9 = 15 / 3 = 5 (Theo đề bài)
=> a/12 = 3 <=>a = 36
b/9 = 3 <=> b = 27
c/8 = 3 <=> c = 24
Vậy a = 36 ; b = 27 ; c = 24.
Học tốt !
ta có:\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)\(\Rightarrow\frac{1}{2}\times a\times\frac{1}{6}=\frac{2}{3}\times b\times\frac{1}{6}=\frac{3}{4}\times c\times\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow\frac{a}{12}=5\Rightarrow a=12\times5=60\)
\(\Rightarrow\frac{b}{9}=5\Rightarrow b=9\times5=45\)
\(\Rightarrow\frac{c}{8}=5\Rightarrow c=8\times5=40\)
chúc bạn học tốt!!
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c=\frac{a}{2}=\frac{2b}{3}=\frac{3b}{4}\)
\(\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}=\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60\); \(b=5.9=45\); \(c=5.8=40\)
Vậy \(a=60\), \(b=45\), \(c=40\)
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU
a) ta có: 2a = 3b; 5b = 7c
\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)
VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
PHẦN SAU TỰ LÀM^-^
c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)
PHẦN SAU TỰ LÀM^-^
Ta có:\(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\) hay \(\frac{a}{2}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
Suy ra ....làm nốt ..^.^
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Leftrightarrow\frac{2a}{4}=\frac{2b}{3}=\frac{3c}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2a}{4}=\frac{2b}{3}=\frac{2a-2b}{4-3}=\frac{2.\left(a-b\right)}{1}=\frac{2.15}{1}=30\)
b tự làm nốt nhé~