Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{17x19}\)
2S = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\)\(\frac{1}{17}-\frac{1}{19}\)
2S = \(\frac{1}{3}-\frac{1}{19}\)
2S = \(\frac{16}{57}\)
S = \(\frac{16}{57}\times\frac{1}{2}\)
S = \(\frac{8}{57}\)
\(S=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}+\frac{1}{255}+\frac{1}{323}\)
\(S=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}+\frac{1}{15\cdot17}+\frac{1}{17\cdot19}\)
\(2S=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{15\cdot17}+\frac{2}{17\cdot19}\)
\(2S=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\)
\(2S=\frac{1}{3}-\frac{1}{19}\)
\(2S=\frac{19}{57}-\frac{3}{57}\)
\(2S=\frac{16}{57}\)
\(S=\frac{16}{57}:2\)
\(S=\frac{16}{57}\cdot\frac{1}{2}\)
\(S=\frac{8}{57}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
tính cụm 2 ra 0 từ đó tính đc ra bằng 0 đó bạn. k cho mình nha
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
Ta có: B= (1/99+12/999-123/9999).(1/2-1/3-1/6)
B= (1/99+12/999-123/9999).(3/6-2/6-1/6)
B= (1/99+12/999-123/9999).0
B= 0
B = (1/99+12/999-123/9999).(1/2-1/3-1/6)
B= (1/99+12/999+123/9999).0
B=0
tk mình nha !
1/201 + 1/202 + ... + 1/400 > 1/400 x 200
1/201 + 1/202 + ... + 1/400 > 1/2
Vậy 1/201 + 1/202 + ... + 1/400 > 1/2
Đặt \(A=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Vì \(\frac{1}{201}>\frac{1}{202}>...>\frac{1}{399}>\frac{1}{400}\)nên :
\(A< \left(\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\right)\)( Có 200 số )
\(A< \frac{1}{400}\times200\)
\(A< \frac{200}{400}\)
\(A< \frac{1}{2}\)( Điều phải chứng minh )
\(\frac{1}{255}+\frac{1}{323}+...+\frac{1}{9999}\)
=\(\frac{1}{15.17}+\frac{1}{17.19}...+\frac{1}{99.101}\)
=\(\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
=\(\frac{1}{15}-\frac{1}{101}\)
= \(\frac{86}{1515}\)
Xong roài đó bạn
Đặt \(A=\frac{1}{225}+\frac{1}{323}+\frac{1}{399}+....+\frac{1}{9999}\)
\(A=\frac{1}{15.17}+\frac{1}{17.19}+\frac{1}{19.21}+...+\frac{1}{99.101}\)
\(2A=\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{1}{15}-\frac{1}{101}=\frac{86}{1515}\)
\(\Rightarrow A=\frac{86}{1515}\div2=\frac{43}{1515}\)