
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài này mình không biết tính nhanh nhé!
\(23\frac{1}{3}:\frac{-1}{2^3}-13\frac{1}{3}:\frac{-1}{2^2}+5.\sqrt{\frac{9}{25}}\)
\(=\frac{23.3+1}{3}:\frac{-1}{2^3}-13\frac{1}{3}:\frac{-1}{2^2}+5\sqrt{\frac{9}{25}}\)
\(=\frac{69+1}{3}:\frac{-1}{2^3}-13\frac{1}{3}:\frac{-1}{2^2}+5\sqrt{\frac{9}{25}}\)
\(=\frac{70}{3}:\frac{-1}{2^3}-13\frac{1}{3}:\frac{-1}{2^2}+5\sqrt{\frac{9}{25}}\)
\(=\frac{70}{3}:\frac{-1}{2^3}-\frac{13.3+1}{3}:\frac{-1}{2^2}+5\sqrt{\frac{9}{25}}\)
\(=\frac{70}{3}:\frac{-1}{2^3}-\frac{40}{3}:\frac{-1}{2^2}+5\sqrt{\frac{9}{25}}\)
\(=\frac{70}{3}:\frac{-1}{2^3}-\frac{40}{3}:\frac{-1}{2^2}+5.\frac{3}{5}\)
\(=\frac{70}{3}:\frac{-1}{8}-\frac{40}{3}:\frac{-1}{4}+5.\frac{3}{5}\)
\(=\frac{70}{3}.\frac{8}{-1}-\frac{40}{3}:\frac{-1}{4}+5.\frac{3}{5}\)
\(=\frac{560}{-3}-\frac{40}{3}:-\frac{1}{4}+5.\frac{3}{5}\)
\(=\frac{560}{-3}-\frac{40}{3}.\frac{4}{-1}+3\)
\(=\frac{-560}{3}-\frac{-160}{3}+\frac{9}{3}\)
\(=\frac{-391}{3}\)
Đúng chứ?
Mà nó dài quá bạn ơi!
Cậu định thử sức tớ làm bài này á, có vài chỗ tớ viết tắt, chỗ nào không hiểu hỏi tớ nhé!
Tớ kiên trì lắm đấy!

Ta có : \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|\ge0\forall x\)
=> 11x \(\ge\)0
=> x \(\ge\)0
Khi đó \(\orbr{\begin{cases}x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\left(10\text{ số hạng x }\right)\\x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=-11x\left(10\text{ số hạng x}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=11x\\10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\\10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{11}\right)=-11x\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{10}{11}\\21x=-\frac{10}{11}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{10}{11}\left(\text{tm}\right)\\x=-\frac{10}{231}\left(\text{loại}\right)\end{cases}}}\)
Vậy \(x=\frac{10}{11}\)

3^2.1/243.81^2.1/3^2
=9/243.81^2/3^2
=1/27.27^2/1
=27^2/27
=27

Ta co:\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{2009-1}{1}+\frac{2009-2}{2}+...+\frac{2009-2007}{2007}+\frac{2009-2008}{2008}\)
\(B=\left(\frac{2009}{1}+\frac{2009}{2}+...+\frac{2009}{2008}\right)-\left(\frac{1}{1}+\frac{2}{2}+...+\frac{2008}{2008}\right)\)
\(B=2009+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)-2008\)
\(B=1+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008}+\frac{1}{2009}\right)\)
Vay \(\frac{A}{B}=\frac{1}{2009}\)
\(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}=\left(\frac{1}{2}\right)^3\)
=> 2n - 1 = 3
=> 2n = 4
=> n = 2
Vậy,........
\(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)
\(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow2n-1=3\)
\(\Rightarrow2n=4\Rightarrow n=2\)