![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta thấy mỗi thừa số trong tích trên là hiệu của \(\frac{1}{100}\)và bình phương của các phân số từ \(\frac{1}{20}->\frac{1}{1}\)nên sẽ xuất hiện bình phương của \(\frac{1}{10}\)
Như vậy tích trên sẽ xuất hiện thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1^2}{10^2}=\frac{1}{100}-\frac{1}{100}=0\)
=> tích trên = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
M = \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}\)
M = 1 - (\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\))
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\) = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)= \(1-\frac{1}{100}\)
M > 1 - (1 - \(\frac{1}{100}\)) =\(\frac{1}{100}\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=1-\frac{1}{2^{50}}\)
\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1
tương tự nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}< 1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1>1/1*2
1/22>1/2*3
1/32>1/3/4
.....................
1/1002>1/100*101
=>1-1/22-...-1/1002>1/1*2-1/2*3-.....-1/100*101=1-1/2-1/2+1/3-1/3+......-1/100+1/101=1/101
vậy 1-1/22-....-1002
study well
k nha
ai k đúng cho mk thì mk trả lại gấp đôi và ngược lại
ai ghé qua nhớ để lại 1 k đúng
ủng hộ mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
4A = 1 +1/2^2+1/2^4+....+1/2^98
3A = 4A-A = (1+1/2^2+1/2^4+....+1/2^98) - (1/2^2+1/2^4+....+1/2^100) = 1 - 1/2^100 < 1
=> A < 1/3 ( ĐPCM )
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\frac{1}{2}+...+\left(\frac{1}{2^{98}}\right)\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{2^{99}}>-\frac{1}{2}>A\)
\(\Rightarrow B>A\)