\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+......+\frac{1}{2010\times2011}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}\)

\(=\frac{2010}{2011}\)

12 tháng 7 2018

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2010\times2011}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}\)

\(=\frac{2010}{2011}\)

_Chúc bạn học tốt_

18 tháng 10 2016

Bài 1 :

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)

Bài 2 :

\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)

\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)

Bài 3 :

\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)

\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)

\(3S=\frac{1}{4}-\frac{1}{22}\)

\(S=\frac{18}{88}\div3=\frac{6}{88}\)

28 tháng 8 2017

Cho biểu thức A= 11×2×3 12×3×4 13×

4×5 +...+ 118×19×20 . So sánh A với 14 .

avt1312778_60by60.jpgDương Đình Hưởng

cố lên mà k

5 tháng 10 2016

1/1 - 1/101 = 100/101

5 tháng 10 2016

bằng 100/101

5 tháng 3 2016

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.................-\frac{1}{100}+1=1-\frac{1}{100}+1=2-\frac{1}{100}=\frac{199}{100}\)

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)

16 tháng 6 2017

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\right)\cdot x=2009\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\cdot x=2009\)

\(\left(1-\frac{1}{2010}\right)\cdot x=2009\)

\(\frac{2009}{2010}\cdot x=2009\)

\(x=2009:\frac{2009}{2010}\)

\(x=2010\)

16 tháng 6 2017

\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+....+\frac{1}{2009}-\frac{1}{2010}\right).x=2009\)

\(\left(\frac{1}{1}-\frac{1}{2010}\right).x=2009\)

\(\frac{2009}{2010}.x=2009\)

            

\(x=2009:\frac{2009}{2010}\)

\(x=2010\)

1 tháng 7 2019

Lời giải :

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

ko chép lại đề :

\(\frac{1}{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ......... + \(\frac{1}{98}\)\(\frac{1}{99}\)\(\frac{1}{99}\)\(\frac{1}{100}\)

\(1-\frac{1}{100}\)

\(\frac{99}{100}\)

23 tháng 1 2017

đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(=1-\frac{1}{1000}+1\)

\(=\frac{1999}{1000}\)

23 tháng 1 2017

1,999 nhé bạn!