Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
= \(\frac{8}{9}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
= \(\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
= \(\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
= \(\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
= \(\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
= \(\frac{8}{9}-\frac{8}{9}\)
= \(0\)
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-...-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+......+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{8.7}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........+\frac{1}{8}-\frac{1}{8}+\frac{1}{9}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}=0\)
Ta có : \(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-......-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+.....+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-1+\frac{1}{9}=\frac{8}{9}+\frac{1}{9}-1=1-1=0\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{2}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}\)
\(A=\frac{9}{10}\)(đáp án của p sai nha)
= 1 / 1*2 + 1 / 2*3 + 1/ 3*4 + 1 / 4 * 5 ... + 1/ 9*10 = 1-1/2 + 1/2 -1/3 +... + 1/9 - 1/10 = 1 - 1/10 = 9 /10
đáp án của bạn bị sai rùi
a) A = \(\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+....+\frac{10301}{100.103}\) (có 34 số hạng)
A = \(\frac{4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+....+\frac{100.103+1}{103.100}\)
A = \(1+\frac{1}{1.4}+1+\frac{1}{4.7}+1+\frac{1}{7.10}+....+1+\frac{1}{100.103}\)
A = \(1.34+\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
A = \(34+\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
A = \(34+\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
A = \(34+\frac{1}{3}\cdot\frac{102}{103}\)
A = \(34+\frac{34}{103}=\frac{3536}{103}\)
\(=\frac{8}{9}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=\frac{8}{9}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-\frac{1}{6}+\frac{1}{7}-\frac{1}{5}+\frac{1}{6}-...-1+\frac{1}{2}\)= 0
Vì \(\frac{1}{n.\left(n+1\right)}=\frac{\left(n+1\right)-n}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Phân h các mẫu số thành tích của 2 thừa số có mối liên hệ :
90 = 10 . 9 72 = 9 . 8 56 = 8 . 7 ....
= -1/ 10 . 9 - 1 / 9 . 8 - 1 / 8 . 7 - ..... - 1 / 2 . 1
= -1/ 10 - -1/ 9 .....
Tới đây bài toán đã trở nên dễ giải hơn , bạn có thể tự làm tiếp .
linh vu mấu chốt để giải bài này là em phải biết phân tách số :
\(=\frac{-1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2}\)
rồi đến đây trở về dạng cơ bản !
=\(\frac{31}{94}\)theo mình mới giải là vậy còn nếu không bạn có thể trình bày cách giải cho mình luôn được không?
Nhiều thế :( Làm 1,2 câu thôi nhé
a) \(\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}\) (bị mất nét nhưng vẫn nhìn ra là số 12 nhỉ?)
b) \(\frac{-2}{5}+\frac{7}{21}=\frac{-42}{105}+\frac{35}{105}=\frac{-7}{105}=\frac{-1}{15}\)
\(\frac{1}{1.4}\)\(+\)\(\frac{1}{4.7}\)\(+\)\(\frac{1}{7.10}\)\(+...+\)\(\frac{1}{100.103}\)
\(=\)\(\frac{1}{3}\)\(\times\)\(\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\)\(\frac{1}{3}\)\(\times\)\(\left(\frac{1}{1}-\frac{1}{103}\right)\)
\(=\)\(\frac{1}{3}\)\(\times\)\(\frac{102}{103}\)
\(=\)\(\frac{34}{103}\)
Sửa đề
\(\frac{8}{9}\)\(-\)\(\frac{1}{72}\)\(-\)\(\frac{1}{56}\)\(-\)\(\frac{1}{42}\)\(-...-\)\(\frac{1}{6}\)\(-\)\(\frac{1}{2}\)
\(=\)\(\frac{8}{9}\)\(-\)\(\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+...+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\)\(\frac{8}{9}\)\(-\)\(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\)\(\frac{8}{9}\)\(-\)\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\)\(\frac{8}{9}\)\(-\)\(\left(1-\frac{1}{9}\right)\)
\(=\)\(\frac{8}{9}\)\(-\)\(\frac{8}{9}\)
\(=\)\(0\)