Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\); \(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); \(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)
=> \(S< \frac{3}{4}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102
A=1-1/102=102/102-1/102=101/102
ý b thì chờ mình tí tìm cách lập luận đã nhé
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)
\(A=1-\frac{1}{102}\)
\(A=\frac{101}{102}\)
giúp mk nha. mk sẽ k cho bn nào trả lời giúp mk mà đúng
(1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10)*100-[5/2:(x+206/100)]:1/2=89
Đặt A=1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10
A=1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9+1/9-1/10
A=1-1/10
A=9/10
=>(1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10)*100-[5/2:(x+206/100)]:1/2=89
=9/10*100-[5/2:(x+206/100)]:1/2=89
90-[5/2:(x+206/100)]:1/2=89
5/2:(x+206/100):1/2=90-89
5/2:(x+206/100):1/2=1
x+206/100:1/2=5/2:1
x+206/100:1/2=5/2
x+103/25=5/2
x=5/2-103/25
x=-81/50
b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}\)
\(B=1-\frac{1}{2015}\)
\(B=\frac{2014}{2015}\)
a) \(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
b)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
còn lại tự giải nha gần giống như phần b thôi cũng thú vị.
ủng hộ nha
\(X=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(X=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(X=1-\frac{1}{100}=\frac{99}{100}\).
x = 1/1*2 + 1/2*3 +1/3*4 + 1/4*5 + ... + 1/99*100
x = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
x = 1- 1/100
x = 99/100
\(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{79.80}=\frac{79}{80}\)
#)Giải :
b, Ta xét \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{79.80}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{79}-\frac{1}{80}\)
\(=1-\frac{1}{80}\)
\(=\frac{79}{80}=\frac{ }{80}\)
Vậy ........................................
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{4}{5}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4}{5}\)
\(1-\frac{1}{x+1}=\frac{4}{5}\)
\(\frac{x}{x+1}=\frac{4}{5}\)
\(\frac{x}{x+1}=\frac{4}{4+1}\)
\(\Rightarrow x=4\)
Vậy x = 4
=))
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{4}{5}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4}{5}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{x-1}=1-\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{x-1}=\frac{1}{5}\)
\(\Leftrightarrow x-1=5\)
\(\Leftrightarrow x=5+1\)
\(\Leftrightarrow x=6\)
~ Rất vui vì giúp đc bn ~ ^_<