Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ lắm,mình giải đây:
C = \(\frac{1}{100}\)- \(\frac{1}{100.99}\)-\(\frac{1}{99.98}\)\(\frac{1}{98.97}\)- ... - \(\frac{1}{3.2}\)- \(\frac{1}{2.1}\)
C = \(\frac{-1}{1.2}\)+ \(\frac{-1}{2.3}\) + ... +\(\frac{-1}{98.99}\)+ \(\frac{1}{99.100}\)+ \(\frac{1}{100}\)
C = \(\frac{-1}{1}\)- \(\frac{-1}{2}\)
Mình bận rồi , phần sau tự làm nha.
Gọi A=\(\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
A= -(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\))
A=-(1-\(\frac{1}{100}\))
A=-(\(\frac{99}{100}\))
A=-99/100
\(\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Leftrightarrow-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(\Leftrightarrow\)\(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Leftrightarrow-\left(1-\frac{1}{100}\right)\)
\(\Leftrightarrow-\left(\frac{99}{100}\right)\)
\(=-\frac{99}{100}\)
\(\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{2.1}\right)\)
\(=\frac{1}{100}-\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{2}-1\right)\)
\(=\frac{1}{100}-\frac{1}{99}-\left(\frac{1}{99}-1\right)\)
\(=\frac{1}{100}-\frac{1}{99}-\frac{1}{99}+1\)
\(=\frac{9799}{9900}\)
\(C=\dfrac{1}{100}-\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(C=\dfrac{1}{100}-\left(\dfrac{1}{2\cdot1}+\dfrac{1}{3\cdot2}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(C=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(C=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(C=\dfrac{1}{100}-\dfrac{99}{100}=\dfrac{-98}{100}=-\dfrac{49}{50}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=-\frac{98}{100}=-\frac{49}{50}\)
a) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{34}{103}\)
b) \(\frac{1}{2000.1999}-\frac{1}{1999.1998}-\frac{1}{1998.1997}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)(*)
Đặt biểu thức trong ngoặc là A ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1997.1998}+\frac{1}{1998.1999}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}\)
\(A=1-\frac{1}{1999}\)
\(A=\frac{1998}{1999}\)
Thay vào biểu thức (*) ta có :
\(\frac{1}{2000.1999}-\frac{1998}{1999}\)
\(=\frac{1}{3998000}-\frac{1998}{1999}\)
\(=\frac{-3995999}{3998000}\)
c) \(\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(=\frac{-1}{1.3}+\frac{-1}{3.5}+\frac{-1}{5.7}+\frac{-1}{7.9}+...+\frac{-1}{99.101}\)
\(=\frac{-1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{-1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{-1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{-1}{2}.\frac{100}{101}\)
\(=\frac{-50}{101}\)
_Chúc bạn học tốt_
\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{98}{100}=-\frac{49}{50}\)
\(\frac{1}{100}\)\(-\)\(\frac{1}{100.99}\)\(-\)\(\frac{1}{99.98}\)\(-\)\(\frac{1}{98.97}\)\(-\)\(...\)\(-\)\(\frac{1}{3.2}\)\(-\)\(\frac{1}{2.1}\)
\(=\)\(\frac{1}{100}\)\(-\)\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\)\(\frac{1}{100}\)\(-\)\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\)\(\frac{1}{100}\)\(-\)\(\left(1-\frac{1}{100}\right)\)
\(=\)\(\frac{1}{100}\)\(-\)\(\frac{99}{100}\)
\(=\)\(\frac{-49}{50}\)
Hok tốt