\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-.......-\frac{1}{2.1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

\(\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99.98}-...-\frac{1}{2\cdot1}\)

\(=\frac{1}{100}-\frac{1}{99}-\frac{1}{100}-\frac{1}{99}-\frac{1}{98}-...-1-\frac{1}{2}\)

\(=1\)

6 tháng 12 2015

đăng làm gì cho mỏi tay

12 tháng 6 2017

\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=\sqrt{\left(1+\frac{1}{1^2}-\frac{1}{2^2}\right)^2-2.\left(1.\frac{1}{1^2}-\frac{1}{1^2}.\frac{1}{2^2}-\frac{1}{2^2}.1\right)}=1+\frac{1}{1^2}-\frac{1}{2^2}\)

Tương tự ta có biểu thức trên

\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)

\(=1+\frac{1}{1^2}-\frac{1}{2^2}+1+\frac{1}{2^2}-\frac{1}{3^2}+...+1+\frac{1}{99^2}-\frac{1}{100^2}\)

\(=1.99+\frac{1}{1^2}-\frac{1}{100^2}\)

\(=100-\frac{1}{10000}\)

\(=99,9999\)

4 tháng 8 2017

Với n thuộc N* ta luôn có :

\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1^2+\left(\frac{1}{n}\right)^2+\left(\frac{1}{n+1}\right)^2+2.1.\frac{1}{n}-2.1.\frac{1}{n+1}-2.\frac{1}{n}.\frac{1}{n+1}}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Nên \(C=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+...+\left(1+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\left(1+1+.....+1\right)+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=99+\left(1-\frac{1}{100}\right)=100-\frac{1}{100}=\frac{9999}{100}\)

21 tháng 6 2017

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+....+\frac{1}{\sqrt{100}}\)

\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}=10.\)

25 tháng 2 2016

b) trước hết ta cần chứng minh nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

ta có x+y+z=0==> x=-(y+z) 

             <=> \(x^3=-\left(y^3+z^3+3yz\left(y+z\right)\right)\)

           <=> \(x^3+y^3+z^3=-3yz\left(y+z\right)\)

      <=> \(x^3+y^3+z^3=3xyz\)( cì y+z=-x)

 áp dụng vào bài ta có \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

 do đó M=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)