\(\frac{101}{19}\)x \(\frac{61}{218}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

a) A = \(\frac{101}{19}.\) \(\frac{61}{218}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)

        \(\frac{101}{218}.\frac{61}{19}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)

        =\(\frac{101}{218}.\left(\frac{61}{19}-\frac{42}{19}\right)+\frac{117}{218}\)

        =\(\frac{101}{218}.\frac{19}{19}+\frac{117}{218}\)

        =\(\frac{101}{218}.1+\frac{117}{218}\)

        =\(\frac{101}{218}+\frac{117}{218}\)

        =\(\frac{218}{218}\)\(=1\)

b) B = \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).\left(\frac{4}{5}-\frac{3}{4}-\frac{1}{20}\right)\)

        =     \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right)\)\(.\left(\frac{1}{20}-\frac{1}{20}\right)\)

        \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).0\)

        = \(0\)

20 tháng 5 2017

Đặt phép tính trên là \(A\)

Có: \(A=\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{90}\right)-x=\frac{19}{24}\)

\(A=\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{9.10}\right)-x=\frac{19}{24}\)

\(A=\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}\right)-x=\frac{19}{24}\)

\(A=\left(\frac{1}{3}-\frac{1}{9}\right)-x=\frac{19}{24}\)

\(A=\frac{2}{9}-x=\frac{19}{24}\)

\(x=\frac{2}{9}-\frac{19}{24}=-\frac{41}{72}\)

\(\Rightarrow x=-\frac{41}{72}\)

20 tháng 5 2017

tao hong biet lam tom lai la tit

25 tháng 4 2017

\(A=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)

\(A=2.\left(\frac{1}{5}-\frac{1}{8}\right)+2.\left(\frac{1}{8}-\frac{1}{19}\right)+2.\left(\frac{1}{19}-\frac{1}{31}\right)+2.\left(\frac{1}{31}-\frac{1}{101}\right)+2.\left(\frac{1}{101}-\frac{1}{200}\right)\)

\(A=2.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\right)\)

\(A=2.\left(\frac{1}{5}-\frac{1}{200}\right)\)

\(A=2.\frac{39}{200}\)

\(\Rightarrow A=\frac{39}{100}\)

20 tháng 4 2020

Dễ ợt! Đại ca toàn đây

a) \(\frac{53}{101}\cdot-\frac{13}{97}+\frac{53}{101}\cdot-\frac{84}{97}\)

\(=\frac{53}{101}\cdot\left(-\frac{13}{97}-\frac{84}{97}\right)\)

\(=\frac{53}{101}\cdot\left(-1\right)\)

\(=-\frac{53}{101}\)

28 tháng 4 2017

bài khó nhất nhé

2. Ta có : 

\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

cộng vào 48 phân số đầu với 1, trừ phân số cuối đi 48 ta được :

\(P=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\left(\frac{49}{1}-48\right)\)

\(P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

\(P=\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

\(P=50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}}{50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)}=\frac{1}{50}\)

9 tháng 3 2019

câu 5đáp án là72