\(\frac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)

Tính nhanh

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

giai giup minh nha

8 tháng 11 2020

Bằng 101 là đúng

27 tháng 9 2016

\(A=101+100+99+98+...+3+2+1\)

\(A=1+2+3+...+98+99+100+101\)

\(A=\frac{101-1+1}{2}.\left(101+1\right)\)

\(A=\frac{101}{2}.102\)

\(A=101.\left(102:2\right)\)

\(A=101.51\)

\(A=5111\)

2 tháng 8 2016

a)( 124 x 237 + 152 ) : ( 870 + 235 x 122 )

= 29540 + 29540

= 29540 x 2

= 59080

b) 101 + 100 + 99 + 98 + ... + 3 + 2 + 1

= ( 101 - 1 ) : 1 + 1] x ( 101 + 1 ) : 2 

= 101 x 102 : 2

= 10302 : 2

= 5151

c) 101 - 100 + 99 - 98 + .. 3 - 2 + 1

(101-100) + (99-98) + ... + (5-4) + (3-2) +1 
=1 + 1 + ... + 1 + 1 + 1 
= 1 x 51 
= 51

29 tháng 7 2023

\(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\\ A=\dfrac{\left[\left(101-1\right):1+1\right]\times\left(101+1\right):2}{1+1+...+1+1}\\ A=\dfrac{5151}{51}=101\\ B=\dfrac{3737.43}{4343.37}\\ B=\dfrac{37.101.43}{43.101.37}\\ B=1\)

24 tháng 5 2019

Trả Lời:

Đặt vế đầu là A, vế sau là B

Tính A=100+99/2+98/3+...+2/99+1/100

A=1+(1+99/2)+(1+98/3)+...+(1+2/99)+(1+1/100)

A=101/101+101/2+101/3+...+101/99+101/100

A=101(1/2+1/3+...+1/100+1/101) (1)

Tính B=100/2+100/3+...+100/100+100/101

B=100(1/2+1/3+...+1/100+1/101)  (2)

Từ (1)(2) suy ra:

A÷B=101(1/2+1/3+...+1/100+1/101)

÷100(1/2+1/3+...+1/100+1/101)

A÷B=101÷100=101/100

Cứ làm theo mình đi đúng đấy! 🎖🎖🎖

30 tháng 5 2017

A= 101-100+99-98+...+3-2+1

=> A = (101-100) + (99-98) + ...+ (3-2) + (1-0)

=> A có 51 cặp

A = 1 + 1 + ... + 1

=> A = 1.51

A = 51

30 tháng 5 2017

kết quả là :

  4

     đs...

6 tháng 3 2021

\(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+2-1}\)                  (1)

Đặt A = 101 + 100 + 99 + 98 + ... + 1

Số số hạng của tổng A là :

(101 - 1) : 1 + 1 = 101 (số hạng)

Suy ra : A = (101 + 1) x 101 : 2 = 5151

Đặt B = 101 - 100 + 99 - 98 + ... + 3 - 2 + 1           (Mẫu số sai đề)

B = (101 - 100) + (99 - 98) + ... + (3 - 2) + 1    (Có : (101 - 3) : 2 + 1 = 50 cặp)

B = 1 + 1 + ... + 1 + 1          (Có : 50 + 1 = 51 số hạng 1)

B = 1 x 51

B = 51

Thay A,B vào (1), ta được :

\(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+2-1}\) = \(\dfrac{5151}{51}\)= 101

* Mẫu số sai đề

 

 

13 tháng 3 2022

ko hỉu