\(\frac{ }{ }\)215.7-216\5.215

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

\(\frac{2^{15}.7-2^{16}}{5.2^{15}}=\frac{2^{15}.\left(7-2\right)}{5.2^{15}}=\frac{2^{15}.5}{5.2^{15}}=1\)

12 tháng 4 2020

Bạn viết lại đề bài đi rồi mình làm cho!!!

Bài 1:

a) Ta có: \(\frac{-5}{7}+\frac{2}{7}+\frac{4}{-9}+\frac{4}{9}\)

\(=-\frac{3}{7}+\frac{-4}{9}+\frac{4}{9}\)

\(=-\frac{3}{7}\)

b) Ta có: \(\left(\frac{1}{2}:\frac{3}{4}\right)^2\)

\(=\left(\frac{1}{2}\cdot\frac{4}{3}\right)^2\)

\(=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)

c) Ta có: \(\frac{1}{2}+\frac{3}{4}-\left(\frac{4}{5}+\frac{3}{4}\right)\)

\(=\frac{1}{2}+\frac{3}{4}-\frac{4}{5}-\frac{3}{4}\)

\(=\frac{1}{2}-\frac{4}{5}\)

\(=\frac{5}{10}-\frac{8}{10}=\frac{-3}{10}\)

d) Ta có: \(5^6:5^4+2^3\cdot2^2-225:15^2\)

\(=5^2+2^5-\frac{15^2}{15^2}\)

\(=25+32-1\)

\(=56\)

e) Ta có: \(\frac{7}{23}+\frac{4}{17}-\frac{7}{23}+\frac{13}{17}\)

\(=\frac{4}{17}+\frac{13}{17}\)

\(=\frac{17}{17}=1\)

g) Ta có: \(19\frac{1}{4}\cdot\frac{7}{12}-15\frac{1}{4}\cdot\frac{7}{12}\)

\(=\frac{7}{12}\left(19+\frac{1}{4}-15-\frac{1}{4}\right)\)

\(=\frac{7}{12}\cdot4=\frac{7}{3}\)

20 tháng 11 2017

Ê Hưng nhớ tau ko .Hạ đây

28 tháng 3 2018

2.  a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)

          \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)

b) \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)

     \(37^{75}=\left(3^3\right)^{25}=27^{25}\)

Vì \(5041^{25}>27^{25}\Rightarrow71^{50}>37^{75}\)

c) \(\frac{201201}{202202}=\frac{201201:1001}{202202:1001}=\frac{201}{202}\)

      \(\frac{201201201}{202202202}=\frac{201201201:1001001}{202202202:1001001}=\frac{201}{202}\)

Vì \(\frac{201}{202}=\frac{201}{202}\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)

27 tháng 4 2020

Gyvyghghgbhg

NV
24 tháng 6 2019

\(A=3+3^2+...+3^{50}\)

\(\Rightarrow3A=3^2+3^3+...+3^{50}+3^{51}\)

\(\Rightarrow3A-A=3^{51}-3\)

\(\Rightarrow2A=3^{51}-3\)

\(\Rightarrow A=\frac{3^{51}-3}{2}\)

\(B=2-2^2+2^3-2^4+...+2^{2019}-2^{2020}\)

\(2B=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)

\(B+2B=2-2^{2021}\)

\(3B=2-2^{2021}\)

\(B=\frac{2-2^{2021}}{3}\)

NV
24 tháng 6 2019

\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2008.2009}\)

\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(C=1-\frac{1}{2009}\)

\(C=\frac{2008}{2009}\)

\(D=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(D=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(D=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(D=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)

21 tháng 7 2017

b)Có \(63^7< 64^7\)

\(64^7=\left(2^6\right)^7=2^{42}\)

\(16^{12}=\left(2^4\right)^{12}=2^{48}\)

Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\Rightarrow63^7< 16^{12}\)