\(f\left(x\right)=x^{2014}-2015x^{2013}+2015x^{2012}-2015x^{2011}+...-2015x+2015\). Khi đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

=> \(f\left(x\right)=x^{2014}-\left(2014+1\right)x^{2013}+\left(2014+1\right)x^{2012}+...-\left(2014+1\right)x+2014+1\)

Mà x = 2014

=> \(f\left(2014\right)=x^{2014}-\left(x+1\right)x^{2013}+\left(x+1\right)^{2012}+...-\left(x+1\right)x+x+1\)

\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}-x^{2012}+....-x^2-x+x+1\)

\(=1\)

=> f(2014) = 1

23 tháng 2 2017

thank nha

5 tháng 3 2016

với x=2014

=> f(x)=x2014-(x+1)x2013+(x+1)x2012-...-(x+1)x+(x+1)

=x2014-x2014-x2013+x2013+x2012-...-x2-x+x+1

=1

5 tháng 3 2016

cảm ơn nha

3 tháng 5 2018

Ta có :\(x=2014\Rightarrow2015=x+1\)

\(\Rightarrow f\left(2014\right)=x^{17}-\left(x+1\right)x^{2016}+\left(x+1\right)x^{2015}-.....+\left(x+1\right)x-1\)

\(=x^{17}-x^{17}-x^{2016}+x^{2016}+x^{2015}-....+x^2+x-1\)

\(=x-1=2014-1=2013\)

3 tháng 5 2018

Cảm ơn bạn nhiều !