Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số liên tục tại mọi điểm khác 0 và 2
\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2x+1\right)=1\)
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(x-1\right)^3=-1\)
\(\Rightarrow\lim\limits_{x\rightarrow0^-}f\left(x\right)\ne\lim\limits_{x\rightarrow0^+}f\left(x\right)\)
\(\Rightarrow f\left(x\right)\) gián đoạn tại \(x_0=0\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\left(x-1\right)^3=1\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(\sqrt{x}-1\right)=\sqrt{2}-1\)
\(\Rightarrow\lim\limits_{x\rightarrow2^-}f\left(x\right)\ne\lim\limits_{x\rightarrow2^+}f\left(x\right)\Rightarrow\) hàm số gián đoạn tại \(x_0=2\)
Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì
Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{x^3-1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2+x+1\right)}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2+x+1}{2}=\frac{3}{2}\)
Để hàm số gián đoạn tại \(x=1\)
\(\Leftrightarrow\lim\limits_{x\rightarrow1}f\left(x\right)\ne f\left(1\right)\)
\(\Leftrightarrow\frac{3}{2}\ne m+1\Rightarrow m\ne\frac{1}{2}\)
\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{\sqrt{3x+1}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{\left(\sqrt{3x+1}-2\right)\left(\sqrt{3x+1}+2\right)}{\left(x-1\right)\left(\sqrt{3x+1}+2\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{3\left(x-1\right)}{\left(x-1\right)\left(\sqrt{3x+1}+2\right)}=\lim\limits_{x\rightarrow1}\frac{3}{\sqrt{3x+1}+2}=\frac{3}{4}\)
\(\Rightarrow\) Để hàm số liên tục tại x=1
\(\Leftrightarrow f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\Leftrightarrow m=\frac{3}{4}\)
\(\lim\limits_{x\rightarrow1^+}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\frac{\left(\sqrt{x+3}-2\right)\left(\sqrt{x+3}+2\right)}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\frac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}\)
\(=\lim\limits_{x\rightarrow1^+}\frac{1}{\sqrt{x+3}+2}=\frac{1}{4}\)
Để hàm số liên tục tại \(x=1\)
\(\Leftrightarrow\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=f\left(1\right)\)
\(\Leftrightarrow m^2+m+\frac{1}{4}=\frac{1}{4}\)
\(\Leftrightarrow m^2+m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
Đáp án B
a) f(x) liên tục tại x0 = -2
Vì \(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)=25\)
b) Có: \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)=\lim\limits_{x\rightarrow\frac{1}{2}}\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}=\lim\limits_{x\rightarrow\frac{1}{2}}\left(2x+1\right)=2\)
mà \(f\left(\frac{1}{2}\right)=3\)
=> \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)\ne f\left(\frac{1}{2}\right)\)
=> f(x) gián đoạn tại x0 = 1/2
c) \(\lim\limits_{x\rightarrow2-}f\left(x\right)=\lim\limits_{x\rightarrow2-}=\lim\limits_{x\rightarrow2-}\left(2x^2+x-1\right)=9\)
\(f\left(2\right)=3.2-5=1\)
Vì \(\lim\limits_{x\rightarrow2-}f\left(x\right)\ne f\left(2\right)\)
nên f(x) gián đoạn tại x0 = 2
\(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}\frac{x^2-x-6}{x\left(x-3\right)}=\frac{-6}{0.-3}=+\infty\)
\(\Rightarrow\) Không tồn tại m để hàm số liên tục tại \(x=0\)
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\frac{x^2-x-6}{x\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{\left(x+2\right)\left(x-3\right)}{x\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{x+2}{x}=\frac{5}{3}\)
\(\Rightarrow\) Để hàm số liên tục tại \(x=3\) thì \(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\Leftrightarrow n=\frac{5}{3}\)