\(\left(\sqrt{6}+\sqrt{5}\right)^{^2}-\sqrt{120}\)

GIÚP MÌNH Với !    TÍNH 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

11 . CHO MIK NHA

1 tháng 8 2019

\(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)

\(=\sqrt{6^2}+2\sqrt{5}\sqrt{6}+\sqrt{5^2}-2\sqrt{30}\)

\(=6+2\sqrt{30}+5-2\sqrt{30}\)

\(=11\)

12 tháng 10 2019

G = \(\sqrt{6}-2+5-\sqrt{6}+2^3=3+8=11\)

F= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2^5\right)^2}\)=\(2+\sqrt{3}-\sqrt{3}+1+2^5=3+32=35\)

H = \(\sqrt{6}-\frac{4\left(\sqrt{10}+\sqrt{6}\right)}{10-6}+\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\)=\(\sqrt{6}-\sqrt{10}-\sqrt{6}+\sqrt{10}=0;\)

a: \(D=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(E=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=18+6\sqrt{5}-6\sqrt{5}-10=8\)

14 tháng 9 2020

a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{3-2\sqrt{3}+1}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{9+6\sqrt{2}+2}-3+\sqrt{2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

c) \(\sqrt{25x^2}-2x=-5x-2x=-7x\)(vì x < 0)

d) \(x-5+\sqrt{25-10x+x^2}=x-5+\sqrt{\left(5-x\right)^2}=x-5+x-5=2x-10\) (vì x > 5)

1 tháng 8 2019

\(F=6+5+2\sqrt{6.5}-\sqrt{120}=11+\sqrt{2^2.6.5}-\sqrt{120}=11+\sqrt{120}-\sqrt{120}=11\)

thanks bạn nha !!vui

10 tháng 9 2020

\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\)    ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))

\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)

\(=\sqrt{4\cdot\sqrt{7}}\)

\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)

\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)

\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)

\(\Leftrightarrow4\sqrt{21}\)

cuối lười tính nên thôi nhá :>

11 tháng 9 2020

tks :>

19 tháng 9 2019

làm ra chưa chỉ với bạn

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

27 tháng 6 2018

\(=\sqrt{\left(3-\sqrt{5}\right)^2\left(3+\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)^2\left(3-\sqrt{5}\right)}\)ư

\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=\sqrt{\left(9-5\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(9-5\right)\left(3+\sqrt{5}\right)}\)

\(=\sqrt{4\left(3-\sqrt{5}\right)}+\sqrt{4\left(3+\sqrt{5}\right)}=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}\)

\(=2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)

\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2=3-\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+3+\sqrt{5}\)

\(=6+2\sqrt{9-5}=6+2\sqrt{4}=6+2\cdot2=6+4=10\)

\(\Rightarrow\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{10}\Rightarrow2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)=2\sqrt{10}\)

\(\Rightarrow\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}=2\sqrt{10}\)