Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\left|6x-2\right|-5\right|=2016x-2017\)
Xét trường hợp 1: \(\left|6x-2\right|-5=2016x-2017\)
\(\Rightarrow\left|6x-2\right|=2016x-2017+5\)
\(\Rightarrow\left|6x-2\right|=2016x-2012\)
\(\Rightarrow\left[{}\begin{matrix}6x-2=2016x-2012\\6x-2=-\left(2016x-2012\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x-2-2016x+2012=0\\6x-2+2016x-2012=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2010x+2010=0\\2022x-2014=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2010x=-2010\\2022x=2014\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2010:-2010\\x=2014:2022\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1007}{1011}\end{matrix}\right.\)
Xét trường hợp 2: \(\left|6x-2\right|-5=-\left(2016x-2017\right)\)
\(\Rightarrow\left|6x-2\right|=-\left(2016x-2017\right)+5\)
\(\Rightarrow\left|6x-2\right|=-2016x+2017+5\)
\(\Rightarrow\left|6x-2\right|=-2016x+2022\)
\(\Rightarrow\left|6x-2\right|=-\left(2016x-2022\right)\)
\(\Rightarrow\left[{}\begin{matrix}6x-2=-\left(2016x-2022\right)\\6x-2=-\left[-\left(2016x-2022\right)\right]\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x-2=-\left(2016x-2022\right)\\6x-2=2016x-2022\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x-2-\left[-\left(2016x-2022\right)\right]=0\\6x-2-\left(2016x-2022\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x-2+2016x-2022=0\\6x-2-2016x+2022=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2022x-2024=0\\-2010x+2020=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2022x=2024\\-2010x=-2020\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2024:2022\\x=\left(-2020\right):\left(-2010\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1012}{1011}\\x=\dfrac{202}{201}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\dfrac{1007}{1011}\) hoặc \(x=\dfrac{1012}{1011}\) hoặc \(x=\dfrac{202}{201}\)
a) \(\left(x-\sqrt{3}\right)^2=\frac{3}{4}\)
\(\Leftrightarrow x-\sqrt{3}=\pm\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{3}=-\frac{\sqrt{3}}{2}\\x-\sqrt{3}=\frac{\sqrt{3}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{2}\\\frac{3\sqrt{3}}{2}\end{cases}}\)
Nghiệm cuối cùng là : \(x_1=\frac{\sqrt{3}}{2};x_2=\frac{3\sqrt{3}}{2}\)
b) || 6x - 2 | - 5 | = 2016. x -2017
<=> || 6x - 2 | -5 | -2016x = -2017
<=> \(\orbr{\begin{cases}\left|6x-2\right|-5-2016.x=-2017,\left|6x-2\right|-5\ge0\\-\left(\left|6x-2\right|-5\right)-2016x=-2017,\left|6x-2\right|-5< 0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1,x\in\left[-\infty,-\frac{1}{2}\right];\left[\frac{7}{6};+\infty\right]\\x=\frac{1012}{1011},x\in\left[-\frac{1}{2},\frac{7}{6}\right]\end{cases}}\)
<=>\(\orbr{\begin{cases}x\in\varnothing\\x=\frac{1012}{1011}\end{cases}}\)
Vậy x = \(\frac{1012}{1011}\)
a, Ta có:
\(\orbr{\begin{cases}x-\sqrt{\frac{3}{4}}=\sqrt{\frac{3}{4}}\\x-\sqrt{\frac{3}{4}}=-\sqrt{\frac{3}{4}}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\sqrt{\frac{3}{4}}\\x=0\end{cases}}}\)
a) \(\left|x+2\right|+\left|x-3\right|=7\)
Lập bảng xét dấu:
x | -2 3 |
x + 2 | - 0 + \(|\) + |
x - 3 | - \(|\) - 0 + |
* Nếu \(x< -2\) thì pttt:
\(-x-2-x+3=7\)
\(\Leftrightarrow-2x+1=7\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\left(tm\right)\)
* Nếu \(-2\le x\le3\) thì pttt:
\(x+2-x+3=7\)
\(\Leftrightarrow5=7\) ( vô lí )
* Nếu \(x>3\) thì pttt:
\(x+2+x-3=7\)
\(\Leftrightarrow2x-1=7\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(tm\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;4\right\}\)
b) \(\left|x+2\right|-6x=1\)
* Nếu \(x+2>0\Leftrightarrow x>2\) thì pttt:
\(x+2-6x=1\)
\(\Leftrightarrow-6x=-1\)
\(\Leftrightarrow x=1\left(ktm\right)\)
* Nếu \(x+2< 0\Leftrightarrow x< 2\) thì pttt:
\(-x-2-6x=1\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=-\dfrac{3}{7}\left(tm\right)\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{-3}{7}\right\}\)
cảm ơn bạn đã ra câu hỏi cho mình , chờ mình giải nhé bạn
f(x) = x ^ 6 - 2016x ^ 5 + 2016x^4 - ... - 2016x + 4032
= x ^6 - 2017x^5 +x^5 + 2017x^4 -...- 2017x + x + 4032
= x^5 ( x - 2017 ) - x^4 ( x - 2017 ) +...- x (x -2017 ) + x + 4032
=> f ( 2018 ) = x^5 - x^4 + x^3 - x^2 + 2x + 4032
= 2018^5 - 2018^4 +2018^3 - 2018^2 + 12096
* KL *